Answer Set Programming
with External Source Access

Reasoning Web Summer School 2017

&8 DLVHEX

Thomas Eiter, Tobias Kaminski, Christoph Redl,
Peter Schiiller, Antonius Weinzierl

{eiter,kaminski,redl,aweinz } @kr.tuwien.ac.at, peter.schuller@marmara.edu.tr

London, UK, July 11, 2017

Outline

Background

Answer Set Programming with External Source Access

Reasoning Web SummertSchool 2677

Introduction

Answer Set Programming (ASP): recent problem solving approach

[DBLP:conf/iclp/Lifschitz99,lifs-2002], proposed by others at about
the same time, e.g. [Marek and Truszczynski, 1999], [Niemeld, 1999]

It has roots in KR, logic programming, and nonmonotonic reasoning

At an abstract level, relates to Satisfiability (SAT) solving and

>
» Term coined by DBLP:conf/iclp/Lifschitz99
|
»
Constraint Programming (CP)
>

[Brewka et al., 2011]

Fall 2016

Answer Set Programming with External Source Access

Books: [Baral, 2003], [Gebser et al., 2012], compact survey:

ANSWER SET PROGRAMMING ARTICLES

5 Answer Set Programming: An Introduction to the Special Issue

Gerhard Brewka, Thomas Eiter, Miraslaw Truszczynski
2 Answer Sets and the Language of Answer Set Programming

Viadinmir Lifschi

13 The Answer Set Programming Paradigm
Tomi Janhunen, Tikka Nimeld

25 Grounding and Solving in Answer Set Programming
Benjamin Kaufinann, Nicola Leone, Simona Peri, Torsten Schaub

23 Modeling and Language Extensions
Martin Gebser, Torsten Schau

45 Systems, Engi and C
Yuliya Licrler, Marco Maratea, Francesco Ricca

53 Applications of ASP

Erdem, Michael Gelfond, Nicola Leone

69 First Order Logic with Inductive Definitions
for Model-Based Problem Solving
Maurice Bruynooghe, Marc Denecker, Miroslaw Truszczyriski

Reasoning Web SummertSchool 2617

Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT

Example: Dilbert
man(dilbert)
person(X) < man(X)

query ?— person(X)

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT

Example: Dilbert
man(dilbert).
person(X) < man(X).

query ?— person(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists

reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)

query: ?— reverse(la|X],[b,c,d, b))

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists
reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)
query: ?— reverse(la|X],[b,c,d, b))

» (1) yields answer “no”, (2) does not terminate

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists
reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)
query: ?— reverse(la|X],[b,c,d, b))

» (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog: “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog: “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog: “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog

query 77— single(X)

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Negation in Logic Programs

Why negation?
» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog: “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog

query 77— single(X)
answer X = dilbert

Answer Set Programming with External Source Access Reasoning Web SummertSchool 26#7

Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X) + man(X), not husband(X).

husband(X) < man(X), not single(X).
query ?— single(X)

answer in Prolog ???7?

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)

answer in Prolog ???7?

Problem: not a single intuitive model!

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)
answer in Prolog ???7?
Problem: not a single intuitive model!

Two intuitive models:

M, = {man(dilbert), single(dilbert) },
M, = {man(dilbert), husband(dilbert)} .

Which one to choose?

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)
answer in Prolog ???7?
Problem: not a single intuitive model!

Two intuitive models:

M, = {man(dilbert), single(dilbert) },
M, = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

LP Desiderata

Relieve the programmer from several concerns:

» the order of program rules does not matter;
» the order of subgoals in a rule does not matter;

» termination is not subject to such order.

Answer Set Programming with External Source Access Reasoning Web SummertSchool 26#7

LP Desiderata

Relieve the programmer from several concerns:

» the order of program rules does not matter;
» the order of subgoals in a rule does not matter;

» termination is not subject to such order.

“Pure” declarative programming

» Prolog does not satisfy these desiderata

» Satisfied by the answer set semantics of logic programs

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Outline

Answer Set Programs
Syntax

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Answer Set Programs: Syntax

Starting point: relational signature S = (C, P, X) of pairwise disjoint sets

» C of constants,
» P of predicate symbols p/n (arity n > 0), and
» X of variables

Basic building blocks:
» terms are elements of C U X
» atoms are formulas p(ty,...,t,), where p/n € P
» literals are formulas a or not a, where a is an atom

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Answer Set Programs: Syntax

Starting point: relational signature S = (C, P, X) of pairwise disjoint sets

» C of constants,
» P of predicate symbols p/n (arity n > 0), and
» X of variables

Basic building blocks:
» terms are elements of C U X
» atoms are formulas p(ty,...,t,), where p/n € P
» literals are formulas a or not a, where a is an atom

Example

Typically, S is not stated explicitly if it is clear from the context;
variables start with upper case letter

> terms X, bob, 123
> atoms day(), written as day, firstname(bob), reachable(a,Y)
» literals firstname(bob), day, not day

Answer Set Programming with External Source Access Reasoning Web SummertSchool 2617

Answer Set Programs: Syntax (cont'd)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form
AiV.. VA, <LL,, mn>0
where all A; are atoms and all L; are literals.
> head(r) = {A1,...,An} is the head (conclusion)
> body(r) = {Li,...,L,} is the body (premise)
Rules r with body(r) = () are facts, and with head(r) = () are constraints

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Set Programs: Syntax (cont'd)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form
AiV.. VA, <LL,, mn>0
where all A; are atoms and all L; are literals.
> head(r) = {A1,...,An} is the head (conclusion)
> body(r) = {Li,...,L,} is the body (premise)
Rules r with body(r) = () are facts, and with head(r) = () are constraints

Example
day \ night.

<— sunshine, raining.

sunshine < day, not raining.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example

ri: p(X) < q(X,Y),at,notr(X). safe v
ry: p(X) < not#(Z). unsafe x

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example
ri: p(X) < q(X,Y),at,notr(X). safe v
ry: p(X) < not#(Z). unsafe x

Example: Reachability/Unreachability

i reachable(X,Y) + connection(X,Y).
r reachable(X,Z) < reachable(X,Y), reachable(Y,Z).
r3 : notreachable(X,Y) <+ location(X), location(Y), not reachable(X,Y).

» Rules r; and r, express reachability (recursion)

» Rule r; expresses unreachability on top — not expressible in
first-order logic!

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Answer Set Programs

Semantics

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics

» Consider ground (i.e. variable-free) rules and programs
» This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C, P, X),
» the Herbrand universe HU are all ground terms (i.e. C),
» the Herbrand base HB is the set of all ground atoms wrt. S,
» a (Herbrand) interpretation is any set I C HB.

Intuitively, a € I means a is true in I, and false otherwise.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics

» Consider ground (i.e. variable-free) rules and programs
» This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C, P, X),
» the Herbrand universe HU are all ground terms (i.e. C),
» the Herbrand base HB is the set of all ground atoms wrt. S,
» a (Herbrand) interpretation is any set I C HB.

Intuitively, a € I means a is true in I, and false otherwise.

Example
P = { friend(X,Y) « friend(Y,X); happy(X) < friend(bob,X); friend(joy, bob)}
> HU = { joy,bob}
> HB = { friend(bob, bob), friend(bob, joy),
friend(joy, bob), friend(joy, joy), happy(bob), happy(joy) }
> [= { friend(joy, bob), friend(bob, joy), happy(joy) }

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics (cont’d)

Satisfaction of formulas, programs etc « in interpretation 7, denoted
I = «, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

a ground atom a, if a € I;

a literal nota, if I t~ a;

aconj. Ly,...,L, of ground literals, I = L;fori =1,...,n;

adisj. A; V...V A, of ground atoms if I = A for some 1 <k <m;
a ground rule 7, if I = body(r) implies that I |= head(r);

a ground program P, if I |= r for each rule r € P.

vvyvVvyVvVyVvyy

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics (cont’d)

Satisfaction of formulas, programs etc « in interpretation 7, denoted
I = «, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

a ground atom a, if a € I;

a literal nota, if I t~ a;

aconj. Ly,...,L, of ground literals, I = L;fori =1,...,n;

adisj. A; V...V A, of ground atoms if I = A for some 1 <k <m;
a ground rule 7, if I = body(r) implies that I |= head(r);

a ground program P, if I |= r for each rule r € P.

vvyvVvyVvVyVvyy

Example (contd)
I = {friend(joy, bob), friend(bob, joy), happy(joy)}
> I |= happy(joy); I~ happy(bob)
> [= friend(bob,joy) < friend(joy, bob)
> [|= happy(joy) V happy(bob) «+ friend(bob, joy), notfriend(joy, bob)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?

CWA Rationale
» Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is
not derivable, assume it is false
» Semantically, prefer minimal models: a model I of P is minimal, if no
model J C I of P exists.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?
CWA Rationale

» Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is
not derivable, assume it is false

» Semantically, prefer minimal models: a model I of P is minimal, if no
model J C [of P exists.

Example: CWA on mutual recursion
Pz{a(—b. b(—a.}7

» [= HB = {a, b} is a model (if P has no constraints)
» the minimal model is I =

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets

Guiding Idea

» rules must be obeyed (= model)
» model must be generated by firing rules
» incorporate CWA (minimality)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets

Guiding Idea

» rules must be obeyed (= model)
» model must be generated by firing rules
» incorporate CWA (minimality)

FLP-Reduct

The FLP-reduct P' of a ground program P wrt. an interpretation I is
obtained as follows: delete from P all rules r with false bodies:

Pl = {r € gmd(P) | I = body(r)}.

Answer sets of a program P are then defined as follows:

Answer Set
An interpretation I is an answer set of P, if I is a minimal model of P’.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).

» I = {restaurant(osteria), indoor(osteria) }: answer set v/

reduct P! = {r|,rn} =P

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).

» I = {restaurant(osteria), indoor(osteria) }: answer set v/

reduct P! = {r|,rn} =P

» I, = {restaurant(osteria), outdoor(osteria) }: no answer set x

reduct P/ = {r|}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets (cont'd)

Example: Restaurant with Decision Making

r restaurant(osteria).
1) indoor(osteria) V outdoor(osteria) < restaurant(osteria).
r3 eat(osteria) < indoor(osteria), raining.
T4 eat(osteria) + outdoor(osteria), not raining.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets (cont'd)

Example: Restaurant with Decision Making

2 restaurant(osteria).
1) indoor(osteria) V outdoor(osteria) < restaurant(osteria).
r3 eat(osteria) <+ indoor(osteria), raining.
ry eat(osteria) + outdoor(osteria), not raining.

answer sets:
» I} = {restaurant(osteria), indoor(osteria) } v’
reduct P1' = {r, rn}
> I, = {restaurant(osteria), outdoor(osteria), eat(osteria)} v/
reduct P2 = {ry,r, 14}

» I3 = {restaurant(osteria), indoor(osteria), raining} x
reduct P = {rl, r, r3}

» all other I: x

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Non-Ground Programs

General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example
> P reach(X,Y) < conn(X,Y).
reach(X,Z) < reach(X,Y), reach(Y,Z).

grnd(P) = () as P has no constants (in theory, let then C = {c})

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Non-Ground Programs

General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example
reach(X,Y) < conn(X,Y).
reach(X,Z) < reach(X,Y), reach(Y,Z).

» P

grnd(P) = () as P has no constants (in theory, let then C = {c})
» P’ = PU{conn(a,b). conn(b,c).}

reach(a, b) < conn(a,b). reach(a, b) < reach(a, b), reach(a, b).
reach(b, a) < conn(b, a). reach(b, a) < reach(b, a), reach(b, a).
reach(b, ¢) < conn(b, ¢). reach(b, ¢) < reach(b, c), reach(b, c).
reach(c, b) < conn(c, b). reach(c, b) < reach(c, b), reach(c, b).
reach(c, a) < conn(c,a). reach(c, a) < reach(c, a), reach(c, a).
reach(a, c) < conn(a, c). reach(a, c) < reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

ASP Paradigm

General idea: answer sets are solutions!

Reduce solving a problem instance I to computing answer sets of an LP

Problem Encoding: Model(s)
- L |—=|ASPSolver |———~
Instance | Program P Solution(s)
» Method:

1. encode I as a (non-monotonic) logic program P, such that solutions of
I are represented by models of P

2. compute some model M of P, using an ASP solver

3. extract a solution for I from M.

variant: compute multiple/all models (for multiple/all solutions)
» Often: decompose I into problem specification and data
» Use a guess and check approach

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Answer Set Programs

Basic Properties

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P={p<+notp.}

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example

P={p<+notp.}
NO answer set is possible (“derive p if it is not derivable”)
Is this bad??

Russell’s Barber Paradox:
man(bertrand).
barber(bertrand).
shaves(X,Y) < barber(X), man(Y), not shaves(Y,Y).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P={p<+notp.}

NO answer set is possible (“derive p if it is not derivable”)
Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).
shaves(X,Y) < barber(X),man(Y), not shaves(Y,Y).

» Adding p<qi,...,qm,n0t ry,..., not r,, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
qi,---,qm, and (i) do not contain ry, ..., 1.

» This is equivalent to the constraint < ¢y,..., g, not r,...,not r,.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?

Proposition (Incomparability)

IfI is an answer set I of a program P, then I |= P and no answer set
I' C I of Pexists (i.e., withl' CIs.tI' #1)

Example

» P ={a + not b}, answer setI = {a}
» P={a <+ noth; b< nota;},answersets!, = {a}, L = {b}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?

Proposition (Incomparability)
IfI is an answer set I of a program P, then I |= P and no answer set

I' C I of Pexists (i.e., withl' CIs.tI' #1)
Example
» P ={a + not b}, answer setI = {a}

» P={a <+ noth; b< nota;},answersets!, = {a}, L = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)

Given some programs P, P' and an atom a, that I = a for every answer
set of P does not imply thatI = a for every answer set of P U P'.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)

Given some programs P, P' and an atom a, that I = a for every answer
set of P does not imply thatI = a for every answer set of P U P'.

Example: Plain Restaurant

» restaurant program P:
restaurant(osteria).
indoor(osteria) < restaurant(osteria), not outdoor(osteria).

answer set
I = {restaurant(osteria), indoor(osteria) } = indoor(osteria)

> P U {outdoor(osteria)} has the answer set
I = {restaurant(osteria), outdoor(osteria) } = indoor(osteria)

Can be exploited to declare default behaviour!

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Supportedness

Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Supportedness
Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r

Proposition (Supportedness)

Any answer set I of a program P is a supported model, i.e., foreacha el
some rule r € grnd(P) exists s.t. I |= body(r) and I N head(r) ={a}.

Example (cont'd)

» For P ={b; a< b,notc}, I = {a,b} is an answer set
» For P = {a < b,notc}, I = {a,b} is no answer set (b lacks support)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Supportedness
Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r

Proposition (Supportedness)

Any answer set I of a program P is a supported model, i.e., foreacha el
some rule r € grnd(P) exists s.t. I |= body(r) and I N head(r) ={a}.

Example (cont'd)

» For P ={b; a< b,notc}, I = {a,b} is an answer set
» For P = {a < b,notc}, I = {a,b} is no answer set (b lacks support)

But: stable = minimal + supported!

Example
P ={a <+ a; a <+ not a}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computational Complexity

An answer set program P is normal, if each rule r € P is normal, defined
as |head(r)] < 1.

Theorem
Deciding whether a normal program P has some answer set is

» NP-complete in the ground (propositional) case;
» NEXPTIME-complete in the non-ground case.

Theorem
Deciding whether an answer set program P has some answer set is

» Y -complete in the propositional case (¥ = NPNF);
» NExpTIMEN-complete in the non-ground case.

Note: the relational (i.e., function-free) non-ground case as considered
here is also called datalog case

More on complexity: [Dantsin et al., 2001]

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Answer Set Programs

Extensions of ASP

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Extensions of ASP

Language extensions like aggregates, complex formula syntax are within
same semantic / computational framework
Need

» interoperability with other logics, e.g. Description Logics

» interfacing with programming languages, e.g. C++, Python

> access to general external sources of information, e.g. WordNet

Approaches

embedded ASP: akin to embedded SQL

bilateral interaction: e.g. JASP

ASP + concrete theories: constraint ASP, ASP + ontologies
ASP + abstract theories: clingo, HEX/DLVHEX

v

vV vv

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Information Access

@ EBI: B
—
Program
Problem
Reasoner

Solution(s)

‘ € ale

External
Sources

Examples

» import external RDF triples into the program
triple(S, P, O) < &rdf’http://(Nick).livejournal.com/data/foaf”] (S, P, O).

» access external graph
reachable(X) < &reachable[conn, a)(X).

» perform auxiliary / data structure computations
Sfullname(Z) < Sconcat[X,Y)(Z), firstname(X), lastname(Y).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Information Access (contd)

Issues

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input

> allow arbitrary external code
= “impedance mismatch”

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input

> allow arbitrary external code
= “impedance mismatch”

» Semantics
> e.g. cyclic reference (web graphs!)

» non-monotonic external sources
= no simple fixpoint computation

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input
> allow arbitrary external code

= “impedance mismatch”
» Semantics

> e.g. cyclic reference (web graphs!)

» non-monotonic external sources
= no simple fixpoint computation

» Value Invention
> new ground terms might appear

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

HEX Programs
Syntax

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C, P, X, G) is of the form

&Y, ., Y| (X, ..., Xm)
where

> Yy,...,Y, are terms and predicate names from C U X U P (input list)
» Xi,..., X, are terms from C U X" (output list)
» &g € G is an external predicate name with in(&g) =n, out(&g) =m

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C, P, X, G) is of the form

&g[Y1, ..., Ya] (X1, -, Xm)

where
> Yy,...,Y, are terms and predicate names from C U X U P (input list)
» Xi,..., X, are terms from C U X" (output list)

» &g € G is an external predicate name with in(&g) =n, out(&g) =m

Examples

» &rdf[U](S, P, O): intuitively, from a given concrete “input” URL U (a
constant), retrieve (one by one) all “output” triples (S, P, O)

» &reachable|connection, a|(X): intuitively, all nodes X reachable from
node a in a graph represented by atoms of form connection(u, v).

Answer Set Programming with External Source Access Reasoning Web Summen Sehool 2017

External Atoms

Examples (cont'd)

> &concat[X, Y](Z): intuitively, concatenate two strings

> &concat[bob, dylan](bobdylan) is true
> &concat[bob, dylan|(Z) is true for Z = bobdylan
> &concat[bob, Y| (bobdylan) is true for Y = dylan

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

External Atoms

Examples (cont'd)

> &concat[X, Y](Z): intuitively, concatenate two strings

> &concat[bob, dylan](bobdylan) is true
> &concat[bob, dylan|(Z) is true for Z = bobdylan
> &concat[bob, Y| (bobdylan) is true for Y = dylan

External atoms can be of any nature (non-logical) nature
Example
&weatherreport|dateLocationPredicate|(WeatherConditions)

query a web-based weather report

» input dateLocationPredicate is a binary predicate with tuples (d, [) of
dates d and locations [(facts dateLocationPredicate(d, 1))

» output WeatherConditions are (one by one) all weather conditions
that occur at some input date & location

&weatherreport[goto](W) where goto = {(1, paris), (1,london), (2, paris),
(2, london)} returns all weather conditions on dates 1/2 for London/Paris

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

HEX Programs

HEX rule and program
A HEX program s a set P of (HEX) rules r of the form
AlV...VA, < Ly...,L,, mn>0,

where all A; are atoms, and all L; are either literals or HEX-literals, i.e.
either

» an ordinary literal,
» an external atom,
» or a default-negated external atom.

That is, like ordinary ASP rules/programs but external atoms can occur in
rule bodies

Examples

> reachable(X) < &reachable|[connection, a](X).
> fullname(Z) < &concat|X, Y)(Z), firsmame(X), lastname(Y).
> < &weatherreport[goto](W), badweather(W).

Answer Set Programming with External Source Access Reasoning Web Summern Sehool 2017

HEX Programs (cont'd)

Example: City Trip
Plan to visit Paris and London, under the condition the weather isn’t bad

Program Il,,:

i badweather(rain). badweather(snow).
r goto(1, paris) V goto(1, london).
r3 goto(2, paris) V goto(2, london).
Ty + &weatherreport[goto](W), badweather(W).

» state what bad weather means (r)
» decide on what day to go to which city (r,, r3)

» exclude trips where the (external) weather report indicates bad
weather during the trip (r4)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

HEX Programs

Semantics

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics

Analogous to ordinary ASP:

» the Herbrand base HB for HEX program P
» the grounding of a rule r, grnd(r), and of P, grnd(P) = J,cp grnd(r).
> interpretations are subsets I C HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Semantics

Analogous to ordinary ASP:
» the Herbrand base HB for HEX program P
» the grounding of a rule r, grnd(r), and of P, grnd(P) = J,cp grnd(r).
> interpretations are subsets I C HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Oracle Function
Every &g € G, has an associated decidable oracle function

fo : 2 x (CUP)" x C" — {T,F}, n=in(&g), m = out(&g)
that maps each (1, y,Xx), where I C HB is an interpretation, ¥y = y1, ..., y,
on CUPis “input’, and X = xy, ..., x,, on C is “output”, to T or F.
Pragmatic assumptions:
» for any 1,¥, only finitely many X yield fg,(1,¥,%¥) = T

» output X is independent of the extensions of the predicates that do
not occur in the input ¥

Answer Set Programming with External Source Access Reasoning Web Summen Sehool 2017

Oracle Functions

Example: String Concatenation

for the external predicate &concat, the associated function is
T, ifXY=2;
Saconcar(1, X, Y, Z) = { F, otherwise

(where XY is concatenation of X and Y)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Oracle Functions

Example: String Concatenation

for the external predicate &concat, the associated function is
T, ifXY=2;
f&cancat(laxv Y>Z) - { F7 otherwise

(where XY is concatenation of X and Y)

Example: City Trip (cont'd)
» weather forecast Paris: sun on day 1 and day 2
» weather forecast London: rain on day 1 and day 2
the corresponding oracle function is (wr = weatherreport)
T, if {goto(1, london), goto(2, london)} C I and W = rain,
T, if {goro(1,london), goto(2, paris)} C I and W € {sun, rain},
fawr(I, goto, W) = { T, if {goto(1, paris), goto(2, london)} C I and W € {sun, rain},
T, if {goto(1, paris), goto(2, paris)} C I and W = sun,
F, otherwise.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.

Example: String Concatenation

I plays no role for concatenation:
> [|= &oncat[bob, dylan|(bobdylan) holds for every interpretation /
> [b~ concat[bob, dylan](bobbydylan) for every interpretation 7

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.

Example: String Concatenation

I plays no role for concatenation:
> [|= &oncat[bob, dylan|(bobdylan) holds for every interpretation /
> [b~ concat[bob, dylan](bobbydylan) for every interpretation 7

Example: City Trip (cont’d)
For weather forecast as above:
» [|= &weatherreport[goto](sun) holds if I |= goto(1, paris), or if
I = goto(2, paris).
> | |= &weatherreport(goto|(rain) if I |= goto(1, london) or if
I = goto(2, london),

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I C HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

Pl = {r € gmd(P) | I = body(r)}.

AS(P) = the set of all answer sets of P

Answer Set Programming with External Source Access Reasoning Web Summern Sehool 2017

Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I C HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

Pl = {r € gmd(P) | I = body(r)}.

AS(P) = the set of all answer sets of P

Remarks:
» For ordinary P (no external atoms), the answer sets are as usual

» For aggregates modeled as external atoms (e.g. &count[goto](N)),
the answer sets coincide with FLP-answer sets [Faber et al., 2011]

» Alternative (more restrictive) notions of answer sets exist
[Shen et al., 2014]

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets for HEX Programs

Example: City Trip (cont'd)

g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets for HEX Programs

Example: City Trip (cont'd)
g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }

» For a different weather report saying it's always sunny, 3 more
answer sets exist:

> {goto(1, paris), goto(2, london), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, paris), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, london), badweather(snow), badweather(rain) }

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Answer Sets for HEX Programs

Example: City Trip (cont'd)
g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }

» For a different weather report saying it's always sunny, 3 more
answer sets exist:

> {goto(1, paris), goto(2, london), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, paris), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, london), badweather(snow), badweather(rain) }

» Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

HEX Programs

Basic Properties

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Properties

The basic properties of answer sets extend to HEX-programs:
answer sets are incomparable

answer sets are minimal models

answer sets are supported models

>
>
| 4
» non-monotonicity

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Properties

The basic properties of answer sets extend to HEX-programs:

> answer sets are incomparable

» answer sets are minimal models

» answer sets are supported models
» non-monotonicity

The computational complexity depends on external atoms: deciding
answer set existence is

» X’-complete for ground programs, if evaluating external atoms, i.e.
deciding whether fg (I, ¥, X) =T holds, is feasible in polynomial time
with an NP oracle;

» X’-hard already for Horn ground programs (no disjunction, no
negation) and polynomial-time external atoms.

» Thus, minimality checking of answer set candidates for
HEX-programs is a challenging problem

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Methodology and Modeling
Modeling Applications: Basic Methodology

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph

Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm
1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.
2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

r(X) V g(X) vV b(X) <node(X)
—r(X),r(Y),edge(X,Y)
<8(X),8(Y), edge(X, Y)
«—b(X),b(Y),edge(X,Y)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

» design a program P and an answer set candidate I, such that I, is
the single answer set of P if the property Pr holds, and
> P has other answer sets (excluding ;) otherwise.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

» design a program P and an answer set candidate I, such that I, is
the single answer set of P if the property Pr holds, and
> P has other answer sets (excluding ;) otherwise.

Example: Non-3-Colorability of a Graph

b(X)Vr(X)V g(X) <node(X)
non_col <—r(X),r(Y),edge(X,Y)
non_col <—g(X),g(Y), edge(X,Y)
non_col <b(X),b(Y), edge(X,Y)
r(X) «—non_col,node(X)
g(X) +—non_col, node(X)
b(X) <—non_col,node(X)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Extension with External Atoms

» The existing techniques can be combined with external atoms.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Extension with External Atoms

» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Extension with External Atoms
» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph

Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Basic Methodology (cont’d)

Extension with External Atoms
» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

r(X)V g(X) V b(X) <—node(X)
< not &check|edge, r, g, b]()

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Methodology and Modeling

Methodology for Using External Atoms

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.

Note:
» Both types of outsourcing may be used together in a program.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.

Note:

» Both types of outsourcing may be used together in a program.
» External sources may combine both use cases.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:
External sources import information while reasoning itself is done in

the logic program.
Note:

» Both types of outsourcing may be used together in a program.
» External sources may combine both use cases.
» Important: Both usages are based on the same language features!

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

» The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

» The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

» Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing (cont’d)
Accessing Procedural Computations

» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].
Complexity Lifting

» Computations with a complexity higher than the complexity of
ordinary ASP programs.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

» Computations with a complexity higher than the complexity of
ordinary ASP programs.

» External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Information Outsourcing

Data Sources

» RDF triplet stores:

p(X,Y) « url(U), &df[U|(X,Y,Z)
Geographic data

Description logic ontologies
Multi-context systems

vV v v v

Relational databases

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Information Outsourcing

Data Sources

» RDF triplet stores:
p(X,Y) « url(U), &df[U|(X,Y,Z)
» Geographic data
» Description logic ontologies
» Multi-context systems
» Relational databases

Note:
Some external sources may realize a combination of data and
computation outsourcing (e.g. complex queries over ontologies).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Application Scenarios
Modeling Procedure

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Modeling an Application

How to realize an application on top of HEX-programs?

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Application Scenarios

Examples

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

Some example
Queries of
Multi-contt
DL-progra
Constraint
Physics si
Route plat

raphs, etc)
ases)

Robotics ¢
ACTHEX (f

vV V.V VvV VvV VY VY

Answer Set Programming with External Source Access Reasoning Web SummenSchool 2017

DA™ 5102

Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

Son

vV V.V VvV VvV VY VY

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

AR
Route planning (possibly sen
Robotics applications (planni

ACTHEX (programs with actiog, - A‘-

5
AUl |

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Applications of HEX-Programs

- .
Wi ‘”"“’"“G L2
[Sirallenban] ® = i
Cale Koel Ot & > ;
- tin Wagnar e n
Pusaa ‘e
i ey et]
= " Lothitn
D b o
: o e Wiz
Fezsslonk Ktz
persirals =
i
(o I = i i S
- Heracanae 7
» r)
e Tostgloche tutsusstafo B
Sopgem uniseraitat ey R
T ke
> [Vasg, 9
% fer am e
el Bt ol shio e 5
et 2 5 Fessendeckmal
s sl
> T e
stk Deliiau <
= Moz © ol Guslay
> e
- ¢ o
1 Pl
Gepe «
I Bl furdation ! 0 3
Aestaasn
Falwr Vs e
> 5 dm cragerie Ways *uFakonzien T
e ekt ’ % Insaitut fur
iy, 2 bl i e e nchen Serlforacinrg,
> i amaih st e -
i ; - Paripite panis
. % Sehmmzenten
® &
e :
(G] Elekirotech
» Ingtritagebdude
£
F 8,
N
Hotel Eraherzog ks
Raer -
= e fawer
et =
Strmss ‘Wien

 iernaCenter 3! Taubsummengenss it ok
S =t Longs 08 ien

dgarihms SRE Rtk
(@ [

fuarmLnan

Toubzummengese) Pulase

Answer Set Programming with External Source Access

Reasoning Web Summer School 2017 =

Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Example: Semantic Web Application

Example: Friend-of-a-Friend
Use the FOAF (Friend-of-a-friend) RDF schema to return all pairs of
nicknames that know each other, as stored in a FOAF RDF datasource:

explore("http://{Nick).livejournal.com/data/foaf”)

triple(S, P, O) < &rdf[What|(S, P, O), explore(What)

knows(Nick;, Nick;) < triple(Id;, "http://xmins.com/foaf/0.1/knows”, Id,),
triple(Id;, "http://xmins.com/foaf/0.1/nick”, Nick;), Nick; < Nick;,
triple(Id,, “http://xmins.com/foaf/0.1/nick”, Nick;).

knows(A, C) < knows(A, B), knows(B, C)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Example: Semantic Web Application (cont'd)

Example: Recursive FOAF querying with limited depth

explore("http://(Nick).livejournal.com/data/foaf”)
explore_to(What, 3) < explore(What)
triple_at(S, P, O, D) < &rdf|Uri](S, P, O), explore_to(Uri,D), D > 1
explore to(U,D;) <+ D,=D; — 1,
triple_at(Id, "http://www.w3.0rg/2000/01/rdf-schema#seeAlso”, U, D,),
triple_at(Id, *http:/xmins.com/foaf/0.1/nick”, Nick, D)
found(Nick) < triple_at(S, "http://xmins.com/foaf/0.1/nick”, Nick, D).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Example: Physics Simulation
Example: AngryHEX

Fundamental strategy:
Maximize the estimated damage to obstacles and pigs.

shootable(O, Type, Tr) < &shootable|O, Tr, V , Sx, Sy, Sw, Sh, B, bb|(0),
birdType(B), velocity(V), objectType(O, Type),
slingshot(Sx, Sy, Sw, Sh), trajectory(Tr)
1g1(0, Tr) V ntgt(O, Tr) < shootable(O, Type, Tr)
«— target(X, _), target(Y,), X #Y.
<« target(_, Ty), target(_, T5), T) # T
target_ex < target(_,)
<— nottarget_ex.
directDmg(O, P, E) < target(O, Tr), objectType(O, T), birdType(Bird),
dmgProbability(Bird, T, P),
energyLoss(Bird, T, E)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Example: Physics Simulation

Example: AngryHEX (cont'd)

exDirectDmg(0) «+ directDmg (O, _,)
nexDirectDmg(O) < not exDirectDmg(0O), objectType(O, -)
goodObject(0) + objectType(O, pig)
goodObject(0) + objectType(O, mt)
«~nexDirectDimg(0), goodObject(0) [1Q4, O, nexDirectDmg]
(

«nexDirectDmg(O). [l@Q1, O, nexDirectDmg]

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

The DLVHEX-System

(7
+% DLVHEX
http://www.kr.tuwien.ac.at/research/systems/dlvhex

» Based on GRINGO and CLASP from the Potassco suite €3

» Supported platforms: Linux-based, OS X, Windows.
Pre-compiled binaries available.

» External sources are implemented as plugins using a plugin API
(available for C++ or Python).

» Support for the ASP-Core-2 standard.

» Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

» User manual available (see system website).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

System Architecture

DLVHEX core

Evaluation o)) rﬁ\\
program ~’| Framework ~ | L_%_\
1 Model ~ 1
.| Generators A | ASP Solver
ASP o HEX: Post o] UFS O
Grounder i Grounder Propagator © Checker ‘ SAT Solver

i

Figure: Architecture of DLVHEX

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

The DLVHEX-System
Usability and System Features

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Python Programming Interface

More convenient interface

Previously only C++ support, but Python preferred by many developers:
» No overhead due to makefiles, compilation, linking, etc.
» High-level features.

» Negligible overhead compared to plugins implemented in C++.

E Reasoning C++ Program- | | .
E Component |] ming Interface H| C++ Plugins |
E I :

Python Program-
ming Interface

<—~>| Python Plugins |

..

DLVHEX

Figure: Architecture of the Python Programming Interface

Answer Set Programming with External Source Access Reasoning Web Summen Sehool 2017

Python Programming Interface (cont'd)

Example
Program

ry: start(s).
=9 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).
compute the nodes reachable from a start node s in a graph.
Implementation of &edge[X](Y):

def edge(x):

graph=((1,2),(1,3),(2,3)) # simplified implementation
for edge in graph: # search for out—edges of node x
if edge[0]==x.intValue ():
dlvhex.output ((edge[1],)) # output edge target

def register ():
prop = dlvhex.ExtSourceProperties () # inform dlvhex about
prop.addFiniteOutputDomain (0) # finiteness of the graph
dlvhex .addAtom(”edge”, (dlvhex.CONSTANT,), 1, prop)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

The DLVHEX-System

Exploiting External Source Properties

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.
Idea

» Developers of external sources and/or implementer of HEX-program
might have useful additional information.

» Provide a (predefined) list of possible properties of external sources.

» Let the developer and/or user specify which properties are satisfied.

» Algorithms exploit them for various purposes, most importantly:

» efficiency improvements and
» language flexibility (reducing syntactic restrictions).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.
Idea
» Developers of external sources and/or implementer of HEX-program
might have useful additional information.
» Provide a (predefined) list of possible properties of external sources.
» Let the developer and/or user specify which properties are satisfied.
» Algorithms exploit them for various purposes, most importantly:

» efficiency improvements and
» language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)
» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)

Adds integers X and Y and is true for their sum Z.

It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.

The 0-th output is no greater than the 0-th input (wrt. some ordering).
» Three-valued semantics:

The external source can be evaluated under partial interpretations.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)

Adds integers X and Y and is true for their sum Z.

It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.

The 0-th output is no greater than the 0-th input (wrt. some ordering).
» Three-valued semantics:

The external source can be evaluated under partial interpretations.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

» Well-ordering: &decrement[X](Z)(wellordering 0 0)
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

» Three-valued semantics:
The external source can be evaluated under partial interpretations.

> ...

How to specify them?
» During development of external source using the plugin API.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

» Well-ordering: &decrement[X](Z)(wellordering 0 0)
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

» Three-valued semantics:
The external source can be evaluated under partial interpretations.

> ...

How to specify them?
» During development of external source using the plugin API.
» As part of the HEX-program using property tags (- - -).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)

Adds integers X and Y and is true for their sum Z.

It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.

The 0-th output is no greater than the 0-th input (wrt. some ordering).
» Three-valued semantics:

The external source can be evaluated under partial interpretations.

> ...

How to specify them?
» During development of external source using the plugin API.

» As part of the HEX-program using property tags (- - -).
Example:
&greaterThan|p, 10]() is true if -, .\, ¢ > 10.
It is monotonic for positive integers.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.

» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Efficiency Improvement

Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.
» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.

Example

» We evaluate &diff[p, q|(X) under I = {p(a),q(b)}.
» It is true for X = a (and false otherwise), i.e., I = &diff[p, q](a).
» = Learn nogood N = {p(a);~q(a);~p(b).q(b), ~&diff [p, q](a)}-

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Efficiency Improvement
Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.

» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.

Example

» We evaluate &diff[p, q|(X) under I = {p(a),q(b)}.
» It is true for X = a (and false otherwise), i.e., I = &diff[p, q](a).

» = Learn nogood N = {p(a);~q(a);~p(b).q(b), ~&diff [p, q](a)}-
Exploiting Properties

» Known properties used to shrink nogoods to their essential part.

» Example: &diff[p, ¢](X) is monotonic in p:
Shrink above nogood N to N’ = {p(a), —q(a), q(b), ~&diff [p, q](a)}.
(If p(b) turns to true, &diff[p, q](a) is still true = —p(b) not needed.)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example

ry: start(s).
= { ry: reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example
ry: start(s).
=194 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example
ry: start(s).
=194 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!
» But: overly restrictive.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example

_ { ry: start(s).

ry: reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).}

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!
» But: overly restrictive.

Exploiting Properties
» Properties may allow for identifying finite groundability even in

presence of recursive value invention (in some cases).

» Example:
Known finiteness of the graph above allows for establishing safety.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

DLVHEX in Practice
Case Study (Demo)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Use Case: Semantic Trip Planning in Vienna

U-Bahn-Netz
Wien

Stand: 2013

s & siovonniten

Requirements
» Find shortest trip visiting predefined locations
» Long trip = add lunch location using an ontology
» Choose restaurant depending on weather report

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Trip Planning

» Transport data might be:

» Extremely large
» Remote/not accessible

» Access external transport information
(information outsourcing)

» Use dedicated algorithm to compute shortest connection
(computation outsourcing)

External atom:
&route[File, Locl,Loc2] (Stpl, Stp2,Costs, Line)

=- Obtain shortest trip by using weak constraints

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Adding Lunch Location

» Adjustment of the trip based on its length

» Add on-demand constraint (no output needed)

» Boolean output depends monotonically on the input
» Specify according property

External atom:
&needRestaurant [trip, Limit] ()

Introduces cyclic dependency, not strongly safe:

—————&route[F,L1,L2] (S1,S2,C,L) «————

destination (L) trip(s,X,Y,C,T)

\—> chooseRestaurant (R,L) —» &needRestaurant[trip,Limit] () J

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Partial Evaluation

» ¢needRestaurant [trip,Limit] () usually evaluated
only after extension of trip is decided

» Truth value not fixed before

» Often truth value can be decided early during search

» Partial assignments: atoms can be true, false or unassigned

» Use both methods isTrue() and isFalse()
» Everything else is unassigned

» Use both methods output() and outputUnknown() to declare outputs
> All other outputs are implicitly false

v

Requirement: assignment monotonicity

Example
Learned nogood: {—#(0,1),#(1,1),2(2,1),1(3, 1), &nR[t,3]()}

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DL-Lite Plugin

v

We use the DL-Lite Plugin for semantically enriched route planning
(inspired by [Eiter et al., 2016c])

v

Interfaces to OWL ontologies using DL reasoner

v

Provides external atoms for concept and role queries:
» &cDL[File, rp, rm, cp,cm, C] (X)
» &rDL[File, rp, rm, cp, cm,R] (X, Y)

v

Bidirectional interaction by adding elements to concepts and roles,
resp. to their complements

Link:
http://www.kr.tuwien.ac.at/research/systems/divhex/dlliteplugin.html

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Restaurant Ontology

BeerGarden C Restaurant Location(Karlsplatz)

BeerGarden C —IndoorRestaurant Location(Museumsquartier)
IndoorRestaurant T Restaurant Location(Praterstern)
IndoorRestaurant T —~BeerGarden BeerGarden(bgl)
IndoorRestaurant — —WurstStand closeTo(bgl, Praterstern)

Restaurant C JcloseTo.Location IndoorRestaurant(irl)
WurstStand T Restaurant closeTo(irl, Museumsquartier)
WurstStand © —IndoorRestaurant WurstStand(ws1)

closeTo(ws1, Karlsplatz)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Weather Data

v

Goal: retrieve weather data from http://openweathermap.org/

v

Importing dynamic data from remote location

v

General plugin for retrieving JSON data from API
» Data represented by nested key-value pairs:
{"weather": [{"id":803, "main":"Clouds",
"description":"clouds", "icon": "O4d"}] ,

v

Input type d1vhex . TUPLE for arbitrary number of constants
» Provide sequence of keys

External atom:
&getJSON [Url, Keys.TUPLE] (Value)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

DEMO

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Summary of the Case Study

» Encoding uses four different external atoms in combination
» sroute-Plugin for information and computation outsourcing

» g&needRestaurant-Plugin for external check
» DL-Lite-Plugin for interfacing an external DL-reasoner

> &getJson-Plugin for accessing remote information on the web

» Complete implementation and more examples at:
https://github.com/hexhex/manual/tree/master/RW2017/

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

DLVHEX in Practice

Further Use Cases

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

HEX” Programs

» By value invention external atoms can generate witnesses
» Used to model query answering from existential rules

Example
Not possible in standard ASP:

3X: office(Y,X) < employee(Y).

Encoding with external atom:

office(Y,X) < employee(Y), &exists[r;, Y](X).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

HEX Programs with Function Symbols

» External atoms can simulate composition and decomposition of
function terms

» Allows external data type checking and argument generation
Example
Not possible in standard ASP:

q(f (X)) < p(X).
r(Y) < q(f(Y)).

Encoding with external atom:

q(A) = p(X), &omplf, X|(A).
r(Y) < q(B), 8decomp|B](f,Y).

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

ACTHEX

» Extension of HEX for execution of declaratively scheduled actions
» Action atoms in rule heads operate on an external environment

» Environment can influence truth values of external atoms
» Enables stateful behaviour

Example

#obot|clean, kitchen){c,2} < night
#obot|clean, bedroom]{c,2} < day
#obot|goto, charger|{b, 1} < &sensor|bat](low)
night V day +

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Constraint HEX Programs

» Grounding issues when encoding constraints in ASP
» Contain ordinary, external and constraint atoms
» Comparisons of arithmetic expressions

» Allow to combine diverse background theories

Example

food(P) < &sql[“Select price from Food”](P)
drink(P) « &sql[“Select price from Drink”](P)
inMenu(F,D) V outMenu(F, D) < food(F), drink(D)
F + D < P < inMenu(F,D), max_price(P)

Encoding of constraint with external atom:

con(F,+,D,<,P)V con(F,+,D,>, P) < inMenu(F, D), max_price(P)
< not &check[con]()

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Nested HEX [Eiter et al., 2013]

» External atoms for evaluating subprograms and inspecting their

answer sets:

&callhex, &callhexfile, &answersets, &predicates, &arguments

» A new instance of DLVHEX is called and results stored in an
answer cache assigning unique handles

Example

pi(x,y) <
p2(a) <
z(b {—
handle(PH

ash(PH,AH

S

—_— — — —

Answer Set Programming with External Source Access

+ &callhex["a v b

< &callhexfile|" sub.hex", p;, p2](PH)
:—"|(PH), &answersets|PH|(AH)

Reasoning Web Summer Sehool 2017

Outline

Conclusion
Related Work

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Related Work

» Many approaches, different degrees of integration
» DLVPB offers access to relational databases via ODBC interface
» ONTODLYV for information retrieval from OWL ontologies, extends
ASP with classes, inheritance, relations and axioms
» DLV-EX programs early generic integration approach
> Introduction of new terms by value invention
» Only terms as inputs to external sources
» Nonmonotonic aggregates not expressible
> CLINGO supports custom functions implemented in Lua or Python

» Import extensions of user-defined predicates during grounding
» Customisable built-in atoms
» No cyclic dependencies

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Related Work (cont’d)

» CLINGO 5 provides generic interfaces for theory solving in ASP
» Semantics differs from HEX unfounded support of theory atoms
allowed = consider p < &id[p]()
» Theory atoms interrelated via external theory (orthogonal to HEX)
» No value invention based on answer set
» Well-suited for system developers, rich infrastructure

» Extensions of ASP with specific external sources:

» Constraint ASP solvers, e.g. CLINGCON, Ic2casp, ezcsp, EZSMT
» Extensions of ASP with SMT, e.g. dingo (difference logic), ASPMT

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Conclusion

Summary

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Summary

HEX is a powerful formalism, wide range of applications
Extends ASP with external sources via API-style interface
Bi-directional interaction and value invention possible
Methodology from ASP generalises to HEX

Implemented in the DLVHEX system

> Plugins in Python and C++
» Exploiting external source properties

vV Yy v Vv Yy

44 DLVHEX

http://www.kr.tuwien.ac.at/research/systems/divhex/

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Outline

Conclusion

Further Resources

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

Further Resources

» All executable examples from this course:
https://github.com/hexhex/manual/tree/master/RW2017/

» Slides of tutorial “ASP for the Semantic Web” and many executable
ASP/HEX-examples:
http://asptut.gibbi.com/

» An online demo of the DLVHEX system:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
demo.php

» Pre-built binaries of DLVHEX for Linux, OS X and Windows:

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
downloadb.html

» The source code of DLVHEX and corresponding plugins, best place
for bug reports:
https://github.com/hexhex/

» Python-based HEX implementation for a fragment of the HEX
language and a subset of features
https://github.com/hexhex/hexlite

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017

https://github.com/hexhex/manual/tree/master/RW2017/
http://asptut.gibbi.com/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html
https://github.com/hexhex/
https://github.com/hexhex/hexlite

References |

B
B

Chitta Baral.
Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Univ. Press, 2003.

Markus Bdgl, Thomas Eiter, Michael Fink, and Peter Schiiller.

The MCS-IE system for explaining inconsistency in multi-context systems.

In In Proceedings of the Twelfth European Conference on Logics in Artificial Intelligence (JELIA
2010), pages 356-359, 2010.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance.
Commun. ACM, 54(12):92—103, 2011.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista lanni, Thomas Krennwallner

Roland Kaminski, Nicola Leone, Francesco Ricca, and Torsten Schaub.
ASP-Core-2 Input Language Format, 2013.

Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista lanni, Christoph Redl, and
Anton Wimmer.

AngryHEX: an artificial player for angry birds based on declarative knowledge bases.

In National Workshop and Prize on Popularize Artificial Intelligence, pages 29-35, 2013.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys, 33(3):374-425, 2001.

Phan Minh Dung.
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic

programming and n-person games.
Atrtificial Intelligence, 77(2):321-357, 1995.

References Il

@ Thomas Eiter, Thomas Krennwallner, and Christoph RedlI.
HEX-Programs with Nested Program Calls.
In Hans Tompits, Salvador Abreu, Johannes Oetsch, Jorg Puhrer, Dietmar Seipel, Masanobu
Umeda, and Armin Wolf, editors, 19th International Conference on Applications of Declarative
Programming and Knowledge Management (INAP 2011), volume 7773 of LNAI, pages 1-10.
Springer, October 2013.

@ Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schiller.

Efficient HEX-program evaluation based on unfounded sets.
Journal of Artificial Intelligence Research, 49:269-321, February 2014.

@ Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.

Domain expansion for asp-programs with external sources.
Artif. Intell., 233:84—121, 2016.

Thomas Eiter, Tobiask Kaminski, Christoph Redl, and Antonius Weinzierl.

Exploiting partial assignments for efficient evaluation of answer set programs with external source
access.

In Proceedings of the Twenty-Fifth International Joint Conference on Atrtificial Intelligence (IJCAI
2016), July 9—15, 2016, New York City, New York, USA, July 2016.

@ Thomas Eiter, Thomas Krennwallner, Matthias Prandtstetter, Christian Rudloff, Patrik Schneider,
and Markus Straub.
Semantically enriched multi-modal routing.
Int. J. Intelligent Transportation Systems Research, 14(1):20-35, 2016.

@ Esra Erdem, Volkan Patoglu, and Peter Schiiller.
A Systematic Analysis of Levels of Integration between High-Level Task Planning and Low-Level

Feasibility Checks.
Al Communications, I0S Press, 2016.

References lll

[
B
B

Esra Erdem, Volkan Patoglu, and Peter Schiiller.

A Systematic Analysis of Levels of Integration between Low-Level Reasoning and Task Planning.
Al Communications, 29(2):319-349, 2016.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Semantics and complexity of recursive aggregates in answer set programming.
Atrtificial Intelligence, 175(1):278-298, 2011.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.

Answer Set Solving in Practice.

Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2012.

Giovambattista lanni, Francesco Calimeri, Stefano Germano, Andreas Humenberger, Christoph

Redl, Daria Stepanova, Andrea Tucci, and Anton Wimmer.
Angry-HEX: an artificial player for angry birds based on declarative knowledge bases.
IEEE Transactions on Computational Intelligence and Al in Games, 2016.

Victor W. Marek and Mirostaw Truszczynski.

Stable Models and an Alternative Logic Programming Paradigm.
In The Logic Programming Paradigm — A 25-Year Perspective, pages 375-398. Springer, 1999.

llkka Niemela.
Logic programming with stable model semantics as constraint programming paradigm.
Annals of Mathematics and Artificial Intelligenc, 25(3—4):241-273, 1999.

Max Ostrowski and Torsten Schaub.

ASP modulo CSP: the clingcon system.
Theory and Practice of Logic Programming (TPLP), 12(4-5):485-503, 2012.

References IV

@ Yi-Dong Shen, Kewen Wang, Thomas Eiter, Michael Fink, Christoph Redl, Thomas Krennwallner,
and Jun Deng.
FLP answer set semantics without circular justifications for general logic programs.
Atrtificial Intelligence, 213:1-41, 2014.

@ Hande Zirtiloglu and Pinar Yolum.

Ranking semantic information for e-government: complaints management.

In Alistair Duke, Martin Hepp, Kalina Bontcheva, and Marc B. Vilain, editors, Proceedings of the
First International Workshop on Ontology-supported Business Intelligence, OBl 2008, Karlsruhe,
Germany, October 27, 2008, volume 308 of ACM International Conference Proceeding Series,
page 5. ACM, 2008.

	Background
	Answer Set Programs
	HEX Programs
	Methodology and Modeling
	Application Scenarios
	The dlvhex-System
	dlvhex in Practice
	Conclusion

