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Introduction

Answer Set Programming (ASP): recent problem solving approach

[DBLP:conf/iclp/Lifschitz99,lifs-2002], proposed by others at about
the same time, e.g. [Marek and Truszczynski, 1999], [Niemeld, 1999]

It has roots in KR, logic programming, and nonmonotonic reasoning

At an abstract level, relates to Satisfiability (SAT) solving and

>
» Term coined by DBLP:conf/iclp/Lifschitz99
|
»
Constraint Programming (CP)
>

[Brewka et al., 2011]

Fall 2016

Answer Set Programming with External Source Access

Books: [Baral, 2003], [Gebser et al., 2012], compact survey:
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Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT
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Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT

Example: Dilbert
man(dilbert)
person(X) < man(X)

query ?— person(X)
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Logic Programming — Prolog

1960s/70s: Logic as a programming language (??)

» Breakthrough: Robinson’s Resolution Principle (1965)

Kowalski (1979): ALGORITHM = LOGIC + CONTROL

» Knowledge for problem solving (LOGIC)
» “Processing” of the knowledge (CONTROL)

Prolog = “Programming in Logic”

DILBERT

Example: Dilbert
man(dilbert).
person(X) < man(X).

query ?— person(X)
answer X = dilbert
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The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).
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The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists

reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)

query: ?— reverse(la|X],[b,c,d, b))
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The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists
reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)
query: ?— reverse(la|X],[b,c,d, b))

» (1) yields answer “no”, (2) does not terminate
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The key: techniques to search for proofs

» Proofs provide answers, based on SLD resolution
» Understanding the resolution mechanism is important

» It may make a difference which logically equivalent form is used
(e.g., termination).

Example: reverse lists
reverse([X|Y),Z) < append(U, [X],Z), reverse(Y,U). (1)
Vs
reverse([X|Y),Z) < reverse(Y,U),append(U, [X],Z). (2)
query: ?— reverse(la|X],[b,c,d, b))

» (1) yields answer “no”, (2) does not terminate

Is this truly declarative programming?
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Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”
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Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog:  “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!
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Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog:  “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog
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Negation in Logic Programs

Why negation?

» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog:  “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog

query 77— single(X)
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Negation in Logic Programs

Why negation?
» Natural linguistic concept
» Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Prolog:  “not (X)” means “Negation as Failure (to prove (X))”

Different from negation in classical logic!

Example: Dilbert cont'd

man(dilbert).
single(X) < man(X), not husband(X).
husband(X) < fail. % fail = "false” in Prolog

query 77— single(X)
answer X = dilbert
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Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).

single(X) + man(X), not husband(X).

husband(X) < man(X), not single(X).
query ?— single(X)

answer in Prolog ???7?
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Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)

answer in Prolog ???7?

Problem: not a single intuitive model!
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Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)
answer in Prolog ???7?
Problem: not a single intuitive model!

Two intuitive models:

M, = {man(dilbert), single(dilbert) },
M, = {man(dilbert), husband(dilbert)} .

Which one to choose?
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Cyclic Negation

(cont'd)
Modifying the last rule of the Dilbert program, we obtain:

man(dilbert).
single(X) + man(X), not husband(X).
husband(X) < man(X), not single(X).

query ?— single(X)
answer in Prolog ???7?
Problem: not a single intuitive model!

Two intuitive models:

M, = {man(dilbert), single(dilbert) },
M, = {man(dilbert), husband(dilbert)} .

Which one to choose? Answer set semantics: both!
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LP Desiderata

Relieve the programmer from several concerns:

» the order of program rules does not matter;
» the order of subgoals in a rule does not matter;

» termination is not subject to such order.
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LP Desiderata

Relieve the programmer from several concerns:

» the order of program rules does not matter;
» the order of subgoals in a rule does not matter;

» termination is not subject to such order.

“Pure” declarative programming

» Prolog does not satisfy these desiderata

» Satisfied by the answer set semantics of logic programs
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Answer Set Programs
Syntax
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Answer Set Programs: Syntax

Starting point: relational signature S = (C, P, X) of pairwise disjoint sets

» C of constants,
» P of predicate symbols p/n (arity n > 0), and
» X of variables

Basic building blocks:
» terms are elements of C U X
» atoms are formulas p(ty,...,t,), where p/n € P
» literals are formulas a or not a, where a is an atom
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Answer Set Programs: Syntax

Starting point: relational signature S = (C, P, X) of pairwise disjoint sets

» C of constants,
» P of predicate symbols p/n (arity n > 0), and
» X of variables

Basic building blocks:
» terms are elements of C U X
» atoms are formulas p(ty,...,t,), where p/n € P
» literals are formulas a or not a, where a is an atom

Example

Typically, S is not stated explicitly if it is clear from the context;
variables start with upper case letter

> terms X, bob, 123
> atoms day(), written as day, firstname(bob), reachable(a,Y)
» literals firstname(bob), day, not day
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Answer Set Programs: Syntax (cont'd)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form
AiV.. VA, <L ....L,, mn>0
where all A; are atoms and all L; are literals.
> head(r) = {A1,...,An} is the head (conclusion)
> body(r) = {Li,...,L,} is the body (premise)
Rules r with body(r) = () are facts, and with head(r) = () are constraints
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Answer Set Programs: Syntax (cont'd)

Programs consist of rules written in “A if B” form

Rules and Programs
A logic program is a finite set of (disjunctive) rules r of the form
AiV.. VA, <L ....L,, mn>0
where all A; are atoms and all L; are literals.
> head(r) = {A1,...,An} is the head (conclusion)
> body(r) = {Li,...,L,} is the body (premise)
Rules r with body(r) = () are facts, and with head(r) = () are constraints

Example
day \ night.

<— sunshine, raining.

sunshine < day, not raining.
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Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example

ri: p(X) < q(X,Y),at,notr(X). safe v
ry: p(X) < not#(Z). unsafe x
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Safety and Recursion

Technical Requirement (by Solvers)
Each variable in a rule r must occur in body(r) unnegated (safety).

Example
ri: p(X) < q(X,Y),at,notr(X). safe v
ry: p(X) < not#(Z). unsafe x

Example: Reachability/Unreachability

i reachable(X,Y) + connection(X,Y).
r reachable(X,Z) < reachable(X,Y), reachable(Y,Z).
r3 :  notreachable(X,Y) <+ location(X), location(Y), not reachable(X,Y).

» Rules r; and r, express reachability (recursion)

» Rule r; expresses unreachability on top — not expressible in
first-order logic!
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Outline

Answer Set Programs

Semantics
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Semantics

» Consider ground (i.e. variable-free) rules and programs
» This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C, P, X),
» the Herbrand universe HU are all ground terms (i.e. C),
» the Herbrand base HB is the set of all ground atoms wrt. S,
» a (Herbrand) interpretation is any set I C HB.

Intuitively, a € I means a is true in I, and false otherwise.
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Semantics

» Consider ground (i.e. variable-free) rules and programs
» This is lifted to arbitrary programs by variable elimination (grounding)

Herbrand Universe, Herbrand Base, Interpretations
Given a relational signature S = (C, P, X),
» the Herbrand universe HU are all ground terms (i.e. C),
» the Herbrand base HB is the set of all ground atoms wrt. S,
» a (Herbrand) interpretation is any set I C HB.

Intuitively, a € I means a is true in I, and false otherwise.

Example
P = { friend(X,Y) « friend(Y,X); happy(X) < friend(bob,X); friend(joy, bob)}
> HU = { joy,bob}
> HB = { friend(bob, bob), friend(bob, joy),
friend(joy, bob), friend(joy, joy), happy(bob), happy(joy) }
> [ = { friend(joy, bob), friend(bob, joy), happy(joy) }

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Semantics (cont’d)

Satisfaction of formulas, programs etc « in interpretation 7, denoted
I = «, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

a ground atom a, if a € I;

a literal nota, if I t~ a;

aconj. Ly,...,L, of ground literals, I = L;fori =1,...,n;

adisj. A; V...V A, of ground atoms if I = A for some 1 <k <m;
a ground rule 7, if I = body(r) implies that I |= head(r);

a ground program P, if I |= r for each rule r € P.

vvyvVvyVvVyVvyy

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Semantics (cont’d)

Satisfaction of formulas, programs etc « in interpretation 7, denoted
I = «, is defined bottom up

Satisfaction, Model
An interpretation I satisfies (is a model of)

a ground atom a, if a € I;

a literal nota, if I t~ a;

aconj. Ly,...,L, of ground literals, I = L;fori =1,...,n;

adisj. A; V...V A, of ground atoms if I = A for some 1 <k <m;
a ground rule 7, if I = body(r) implies that I |= head(r);

a ground program P, if I |= r for each rule r € P.

vvyvVvyVvVyVvyy

Example (contd)
I = {friend(joy, bob), friend(bob, joy), happy(joy)}
> I |= happy(joy); I~ happy(bob)
> [ = friend(bob,joy) < friend(joy, bob)
> [ |= happy(joy) V happy(bob) «+ friend(bob, joy), notfriend(joy, bob)
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Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?
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Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?

CWA Rationale
» Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is
not derivable, assume it is false
» Semantically, prefer minimal models: a model I of P is minimal, if no
model J C I of P exists.
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Semantics (cont’d)

Example
P P:{b. a <+ b. c<—d.}

> I} = {b,a} is a model of P
» I, = {b,a,c} is a model of P as well

why should ¢ being true in I, be accepted?
CWA Rationale

» Respect reit-78’s [reit-78] Closed World Assumption (CWA): If c is
not derivable, assume it is false

» Semantically, prefer minimal models: a model I of P is minimal, if no
model J C [ of P exists.

Example: CWA on mutual recursion
Pz{a(—b. b(—a.}7

» [ = HB = {a, b} is a model (if P has no constraints)
» the minimal model is I =
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Answer Sets

Guiding Idea

» rules must be obeyed (= model)
» model must be generated by firing rules
» incorporate CWA (minimality)
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Answer Sets

Guiding Idea

» rules must be obeyed (= model)
» model must be generated by firing rules
» incorporate CWA (minimality)

FLP-Reduct

The FLP-reduct P' of a ground program P wrt. an interpretation I is
obtained as follows: delete from P all rules r with false bodies:

Pl = {r € gmd(P) | I = body(r)}.

Answer sets of a program P are then defined as follows:

Answer Set
An interpretation I is an answer set of P, if I is a minimal model of P’.
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Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).
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Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).

» I = {restaurant(osteria), indoor(osteria) }: answer set v/

reduct P! = {r|,rn} =P
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Answer Sets (cont'd)

Example: Restaurant

program P:
o restaurant(osteria).
ry i indoor(osteria) <+ restaurant(osteria), not outdoor(osteria).

» I = {restaurant(osteria), indoor(osteria) }: answer set v/

reduct P! = {r|,rn} =P

» I, = {restaurant(osteria), outdoor(osteria) }: no answer set x

reduct P/ = {r|}
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Answer Sets (cont'd)

Example: Restaurant with Decision Making

r restaurant(osteria).
1) indoor(osteria) V outdoor(osteria) < restaurant(osteria).
r3 eat(osteria) < indoor(osteria), raining.
T4 eat(osteria) + outdoor(osteria), not raining.
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Answer Sets (cont'd)

Example: Restaurant with Decision Making

2 restaurant(osteria).
1) indoor(osteria) V outdoor(osteria) < restaurant(osteria).
r3 eat(osteria) <+ indoor(osteria), raining.
ry eat(osteria) + outdoor(osteria), not raining.

answer sets:
» I} = {restaurant(osteria), indoor(osteria) } v’
reduct P1' = {r, rn}
> I, = {restaurant(osteria), outdoor(osteria), eat(osteria)} v/
reduct P2 = {ry,r, 14}

» I3 = {restaurant(osteria), indoor(osteria), raining} x
reduct P = {rl, r, r3}

» all other I: x
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Non-Ground Programs
General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)
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Non-Ground Programs

General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example
> P reach(X,Y) < conn(X,Y).
reach(X,Z) < reach(X,Y), reach(Y,Z).

grnd(P) = () as P has no constants (in theory, let then C = {c})
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Non-Ground Programs

General Case: Variable Elimination (Grounding)
(ground) substitution: mapping o : X UC — C s.t. o(c) = cforany c € C

The grounding of (i) a rule r is grnd(r) = {ro | o is a substitution};
(ii) a program P is grnd(P) = |J,cp grnd(r).

The answer-sets of a non-ground program P are those of grnd(P)

Example
reach(X,Y) < conn(X,Y).
reach(X,Z) < reach(X,Y), reach(Y,Z).

» P

grnd(P) = () as P has no constants (in theory, let then C = {c})
» P’ = PU{conn(a,b). conn(b,c).}

reach(a, b) < conn(a,b). reach(a, b) < reach(a, b), reach(a, b).
reach(b, a) < conn(b, a). reach(b, a) < reach(b, a), reach(b, a).
reach(b, ¢) < conn(b, ¢). reach(b, ¢) < reach(b, c), reach(b, c).
reach(c, b) < conn(c, b). reach(c, b) < reach(c, b), reach(c, b).
reach(c, a) < conn(c,a). reach(c, a) < reach(c, a), reach(c, a).
reach(a, c) < conn(a, c). reach(a, c) < reach(a, c), reach(a, c).

answer set I = {conn(a, b), conn(b, a), reach(a, b), reach(b, c), reach(a, c)}
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ASP Paradigm

General idea: answer sets are solutions!

Reduce solving a problem instance I to computing answer sets of an LP

Problem Encoding: Model(s)
- L |—=|ASPSolver |———~
Instance | Program P Solution(s)
» Method:

1. encode I as a (non-monotonic) logic program P, such that solutions of
I are represented by models of P

2. compute some model M of P, using an ASP solver

3. extract a solution for I from M.

variant: compute multiple/all models (for multiple/all solutions)
» Often: decompose I into problem specification and data
» Use a guess and check approach
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Outline

Answer Set Programs

Basic Properties
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Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P={p<+notp.}

NO answer set is possible (“derive p if it is not derivable”)

Is this bad??
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Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example

P={p<+notp.}
NO answer set is possible (“derive p if it is not derivable”)
Is this bad??

Russell’s Barber Paradox:
man(bertrand).
barber(bertrand).
shaves(X,Y) < barber(X), man(Y), not shaves(Y,Y).
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Lack of Answer Sets: Incoherence
Programs with not might lack answer sets.

Example
P={p<+notp.}

NO answer set is possible (“derive p if it is not derivable”)
Is this bad??

Russell’s Barber Paradox:
man(bertrand).

barber(bertrand).
shaves(X,Y) < barber(X),man(Y), not shaves(Y,Y).

» Adding p<qi,...,qm,n0t ry,..., not r,, not p.

to P, where p is fresh, “kills” all answer sets of P that (i) contain
qi,---,qm, and (i) do not contain ry, ..., 1.

» This is equivalent to the constraint < ¢y,..., g, not r,...,not r,.
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Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?
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Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?

Proposition (Incomparability)

IfI is an answer set I of a program P, then I |= P and no answer set
I' C I of Pexists (i.e., withl' CIs.tI' #1)

Example

» P ={a + not b}, answer setI = {a}
» P={a <+ noth; b< nota;},answersets!, = {a}, L = {b}
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Incomparability and Minimality

» Answer sets are minimal models of P.
» What about P itself?

Proposition (Incomparability)
IfI is an answer set I of a program P, then I |= P and no answer set

I' C I of Pexists (i.e., withl' CIs.tI' #1)
Example
» P ={a + not b}, answer setI = {a}

» P={a <+ noth; b< nota;},answersets!, = {a}, L = {b}

In fact, answer sets satisfy a stronger property in the spirit of CWA:

Proposition (Minimality)
Every answer set I of a program P is a minimal model of P.
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Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)

Given some programs P, P' and an atom a, that I = a for every answer
set of P does not imply thatI = a for every answer set of P U P'.
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Non-Monotonicity

Answer sets violate the monotonicity of classical logic

Proposition (Non-monotonicity)

Given some programs P, P' and an atom a, that I = a for every answer
set of P does not imply thatI = a for every answer set of P U P'.

Example: Plain Restaurant

» restaurant program P:
restaurant(osteria).
indoor(osteria) < restaurant(osteria), not outdoor(osteria).

answer set
I = {restaurant(osteria), indoor(osteria) } = indoor(osteria)

> P U {outdoor(osteria)} has the answer set
I = {restaurant(osteria), outdoor(osteria) } = indoor(osteria)

Can be exploited to declare default behaviour!
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Supportedness

Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r
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Supportedness
Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r

Proposition (Supportedness)

Any answer set I of a program P is a supported model, i.e., foreacha el
some rule r € grnd(P) exists s.t. I |= body(r) and I N head(r) ={a}.

Example (cont'd)

» For P ={b; a< b,notc}, I = {a,b} is an answer set
» For P = {a < b,notc}, I = {a,b} is no answer set (b lacks support)
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Supportedness
Presence of atoms in answer sets must be supported by rules
Example

> ruler: a < b,notc, model I = {a, b}
> ais supported by the “firing” rule r

Proposition (Supportedness)

Any answer set I of a program P is a supported model, i.e., foreacha el
some rule r € grnd(P) exists s.t. I |= body(r) and I N head(r) ={a}.

Example (cont'd)

» For P ={b; a< b,notc}, I = {a,b} is an answer set
» For P = {a < b,notc}, I = {a,b} is no answer set (b lacks support)

But: stable = minimal + supported!

Example
P ={a <+ a; a <+ not a}
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Computational Complexity

An answer set program P is normal, if each rule r € P is normal, defined
as |head(r)] < 1.

Theorem
Deciding whether a normal program P has some answer set is

» NP-complete in the ground (propositional) case;
» NEXPTIME-complete in the non-ground case.

Theorem
Deciding whether an answer set program P has some answer set is

» Y -complete in the propositional case (¥ = NPNF);
» NExpTIMEN-complete in the non-ground case.

Note: the relational (i.e., function-free) non-ground case as considered
here is also called datalog case

More on complexity: [Dantsin et al., 2001]
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Answer Set Programs

Extensions of ASP
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Extensions of ASP

Language extensions like aggregates, complex formula syntax are within
same semantic / computational framework
Need

» interoperability with other logics, e.g. Description Logics

» interfacing with programming languages, e.g. C++, Python

> access to general external sources of information, e.g. WordNet

Approaches

embedded ASP: akin to embedded SQL

bilateral interaction: e.g. JASP

ASP + concrete theories: constraint ASP, ASP + ontologies
ASP + abstract theories: clingo, HEX/DLVHEX

v

vV vv
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External Information Access

@ EBI: B
—
Program
Problem
Reasoner

Solution(s)

‘ € ale

External
Sources

Examples

» import external RDF triples into the program
triple(S, P, O) < &rdf’http://(Nick).livejournal.com/data/foaf”] (S, P, O).

» access external graph
reachable(X) < &reachable[conn, a)(X).

» perform auxiliary / data structure computations
Sfullname(Z) < Sconcat[X,Y)(Z), firstname(X), lastname(Y).
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External Information Access (contd)

Issues
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External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input

> allow arbitrary external code
= “impedance mismatch”
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External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input

> allow arbitrary external code
= “impedance mismatch”

» Semantics
> e.g. cyclic reference (web graphs!)

» non-monotonic external sources
= no simple fixpoint computation
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External Information Access (cont'd)

Issues

» Formal Model of External Atoms
» predicate input
> allow arbitrary external code

= “impedance mismatch”
» Semantics

> e.g. cyclic reference (web graphs!)

» non-monotonic external sources
= no simple fixpoint computation

» Value Invention
> new ground terms might appear
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Outline

HEX Programs
Syntax
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Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C, P, X, G) is of the form

&Y, ., Y| (X, ..., Xm)
where

> Yy,...,Y, are terms and predicate names from C U X U P (input list)
» Xi,..., X, are terms from C U X" (output list)
» &g € G is an external predicate name with in(&g) =n, out(&g) =m

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Syntax

New element: G external predicate names &g that have in(&g) many
“input” arguments and out(&g) many “output” arguments

External Atom
An external atom over a rel. signature S = (C, P, X, G) is of the form

&g[Y1, ..., Ya] (X1, -, Xm)

where
> Yy,...,Y, are terms and predicate names from C U X U P (input list)
» Xi,..., X, are terms from C U X" (output list)

» &g € G is an external predicate name with in(&g) =n, out(&g) =m

Examples

» &rdf[U](S, P, O): intuitively, from a given concrete “input” URL U (a
constant), retrieve (one by one) all “output” triples (S, P, O)

» &reachable|connection, a|(X): intuitively, all nodes X reachable from
node a in a graph represented by atoms of form connection(u, v).
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External Atoms

Examples (cont'd)

> &concat[X, Y](Z): intuitively, concatenate two strings

> &concat[bob, dylan](bobdylan) is true
> &concat[bob, dylan|(Z) is true for Z = bobdylan
> &concat[bob, Y| (bobdylan) is true for Y = dylan
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External Atoms

Examples (cont'd)

> &concat[X, Y](Z): intuitively, concatenate two strings

> &concat[bob, dylan](bobdylan) is true
> &concat[bob, dylan|(Z) is true for Z = bobdylan
> &concat[bob, Y| (bobdylan) is true for Y = dylan

External atoms can be of any nature (non-logical) nature
Example
&weatherreport|dateLocationPredicate|(WeatherConditions)

query a web-based weather report

» input dateLocationPredicate is a binary predicate with tuples (d, [) of
dates d and locations [ (facts dateLocationPredicate(d, 1))

» output WeatherConditions are (one by one) all weather conditions
that occur at some input date & location

&weatherreport[goto](W) where goto = {(1, paris), (1,london), (2, paris),
(2, london)} returns all weather conditions on dates 1/2 for London/Paris

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



HEX Programs

HEX rule and program
A HEX program s a set P of (HEX) rules r of the form
AlV...VA, < Ly...,L,, mn>0,

where all A; are atoms, and all L; are either literals or HEX-literals, i.e.
either

» an ordinary literal,
» an external atom,
» or a default-negated external atom.

That is, like ordinary ASP rules/programs but external atoms can occur in
rule bodies

Examples

> reachable(X) < &reachable|[connection, a](X).
> fullname(Z) < &concat|X, Y)(Z), firsmame(X), lastname(Y).
> < &weatherreport[goto](W), badweather(W).
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HEX Programs (cont'd)

Example: City Trip
Plan to visit Paris and London, under the condition the weather isn’t bad

Program Il,,:

i badweather(rain). badweather(snow).
r goto(1, paris) V goto(1, london).
r3 goto(2, paris) V goto(2, london).
Ty + &weatherreport[goto](W), badweather(W).

» state what bad weather means (r)
» decide on what day to go to which city (r,, r3)

» exclude trips where the (external) weather report indicates bad
weather during the trip (r4)
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Outline

HEX Programs

Semantics
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Semantics

Analogous to ordinary ASP:

» the Herbrand base HB for HEX program P
» the grounding of a rule r, grnd(r), and of P, grnd(P) = J,cp grnd(r).
> interpretations are subsets I C HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.
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Semantics

Analogous to ordinary ASP:
» the Herbrand base HB for HEX program P
» the grounding of a rule r, grnd(r), and of P, grnd(P) = J,cp grnd(r).
> interpretations are subsets I C HB with no external atoms

To define satisfaction, key issue is the semantics of external atoms.

Oracle Function
Every &g € G, has an associated decidable oracle function

fo : 2 x (CUP)" x C" — {T,F}, n=in(&g), m = out(&g)
that maps each (1, y,Xx), where I C HB is an interpretation, ¥y = y1, ..., y,
on CUPis “input’, and X = xy, ..., x,, on C is “output”, to T or F.
Pragmatic assumptions:
» for any 1,¥, only finitely many X yield fg,(1,¥,%¥) = T

» output X is independent of the extensions of the predicates that do
not occur in the input ¥
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Oracle Functions

Example: String Concatenation

for the external predicate &concat, the associated function is
T, ifXY=2;
Saconcar(1, X, Y, Z) = { F, otherwise

(where XY is concatenation of X and Y)
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Oracle Functions

Example: String Concatenation

for the external predicate &concat, the associated function is
T, ifXY=2;
f&cancat(laxv Y>Z) - { F7 otherwise

(where XY is concatenation of X and Y)

Example: City Trip (cont'd)
» weather forecast Paris: sun on day 1 and day 2
» weather forecast London: rain on day 1 and day 2
the corresponding oracle function is (wr = weatherreport)
T, if {goto(1, london), goto(2, london)} C I and W = rain,
T, if {goro(1,london), goto(2, paris)} C I and W € {sun, rain},
fawr(I, goto, W) = { T, if {goto(1, paris), goto(2, london)} C I and W € {sun, rain},
T, if {goto(1, paris), goto(2, paris)} C I and W = sun,
F, otherwise.
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Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.
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Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.

Example: String Concatenation

I plays no role for concatenation:
> [ |= &oncat[bob, dylan|(bobdylan) holds for every interpretation /
> [ b~ concat[bob, dylan](bobbydylan) for every interpretation 7
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Satisfaction and Models

Satisfaction of External Atom

An interpretation I C HB satisfies (is a model of) a ground external atom
a = &g[y](X), denoted I |= a, if fg,(1,¥,%) = T.

Example: String Concatenation

I plays no role for concatenation:
> [ |= &oncat[bob, dylan|(bobdylan) holds for every interpretation /
> [ b~ concat[bob, dylan](bobbydylan) for every interpretation 7

Example: City Trip (cont’d)
For weather forecast as above:
» [ |= &weatherreport[goto](sun) holds if I |= goto(1, paris), or if
I = goto(2, paris).
> | |= &weatherreport(goto|(rain) if I |= goto(1, london) or if
I = goto(2, london),
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Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I C HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

Pl = {r € gmd(P) | I = body(r)}.

AS(P) = the set of all answer sets of P
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Answer Sets for HEX Programs

Answer sets naturally extend to HEX-programs

Answer Set of a HEX Program
An interpretation I C HB is an answer set of a HEX program P, if I is a
minimal model of the FLP-reduct

Pl = {r € gmd(P) | I = body(r)}.

AS(P) = the set of all answer sets of P

Remarks:
» For ordinary P (no external atoms), the answer sets are as usual

» For aggregates modeled as external atoms (e.g. &count[goto](N)),
the answer sets coincide with FLP-answer sets [Faber et al., 2011]

» Alternative (more restrictive) notions of answer sets exist
[Shen et al., 2014]
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Answer Sets for HEX Programs

Example: City Trip (cont'd)

g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }
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Answer Sets for HEX Programs

Example: City Trip (cont'd)
g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }

» For a different weather report saying it's always sunny, 3 more
answer sets exist:

> {goto(1, paris), goto(2, london), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, paris), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, london), badweather(snow), badweather(rain) }
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Answer Sets for HEX Programs

Example: City Trip (cont'd)
g0t badweather(rain). badweather(snow).

)
goto(1, paris) V goto(1, london).
goto(2, paris) V goto(2, london).

)

< &weatherreport|goto](W), badweather(W

» For the above weather report, I1,,, has one answer set:
{goto(1, paris), goto(2, paris), badweather(snow), badweather(rain) }

» For a different weather report saying it's always sunny, 3 more
answer sets exist:

> {goto(1, paris), goto(2, london), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, paris), badweather(snow), badweather(rain) }
> {goto(1,london), goto(2, london), badweather(snow), badweather(rain) }

» Finally if the weather report for both cities is snow for days 1 and 2,
no answer set exists.
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Outline

HEX Programs

Basic Properties
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Basic Properties

The basic properties of answer sets extend to HEX-programs:
answer sets are incomparable

answer sets are minimal models

answer sets are supported models

>
>
| 4
» non-monotonicity
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Basic Properties

The basic properties of answer sets extend to HEX-programs:

> answer sets are incomparable

» answer sets are minimal models

» answer sets are supported models
» non-monotonicity

The computational complexity depends on external atoms: deciding
answer set existence is

» X’-complete for ground programs, if evaluating external atoms, i.e.
deciding whether fg (I, ¥, X) =T holds, is feasible in polynomial time
with an NP oracle;

» X’-hard already for Horn ground programs (no disjunction, no
negation) and polynomial-time external atoms.

» Thus, minimality checking of answer set candidates for
HEX-programs is a challenging problem
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Outline

Methodology and Modeling
Modeling Applications: Basic Methodology
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm

1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.

2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph

Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.
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Basic Methodology

Modeling techniques from ordinary ASP carry over to HEX-programs.

Guess and check paradigm
1. Generate a superset of the desired solutions.
= Use disjunctive rules or default negation to span a search space.
2. Use constraints to eliminate spurious solutions.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

r(X) V g(X) vV b(X) <node(X)
—r(X),r(Y),edge(X,Y)
<8(X),8(Y), edge(X, Y)
«—b(X),b(Y),edge(X,Y)
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Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
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Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

» design a program P and an answer set candidate I, such that I, is
the single answer set of P if the property Pr holds, and
> P has other answer sets (excluding ;) otherwise.
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Basic Methodology (cont’d)

Saturation technique

1. Check whether all possible guesses satisfy a certain property Pr.
2. To test a property Pr we

» design a program P and an answer set candidate I, such that I, is
the single answer set of P if the property Pr holds, and
> P has other answer sets (excluding ;) otherwise.

Example: Non-3-Colorability of a Graph

b(X)Vr(X)V g(X) <node(X)
non_col <—r(X),r(Y),edge(X,Y)
non_col <—g(X),g(Y), edge(X,Y)
non_col <b(X),b(Y), edge(X,Y)
r(X) «—non_col,node(X)
g(X) +—non_col, node(X)
b(X) <—non_col,node(X)
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Basic Methodology (cont’d)

Extension with External Atoms

» The existing techniques can be combined with external atoms.
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Basic Methodology (cont’d)

Extension with External Atoms

» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.
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Basic Methodology (cont’d)

Extension with External Atoms
» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph

Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Basic Methodology (cont’d)

Extension with External Atoms
» The existing techniques can be combined with external atoms.
» Example: Checks can be outsourced to external sources.

Example: 3-Colorability of a Graph
Consider a graph G = (V,E)
given by facts node(v) for all v € V and edge(u, v) for all (u,v) € E.

r(X)V g(X) V b(X) <—node(X)
< not &check|edge, r, g, b]()
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Outline

Methodology and Modeling

Methodology for Using External Atoms
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Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.
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Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:
Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.
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Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.

Note:
» Both types of outsourcing may be used together in a program.
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Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:

External sources import information while reasoning itself is done in
the logic program.

Note:

» Both types of outsourcing may be used together in a program.
» External sources may combine both use cases.
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Methodology for Using External Atoms

Main Usages of External Atoms

» Computation Outsourcing:

Send the definition of a subproblem to an external source and
retrieve its result.

» Information Outsourcing:
External sources import information while reasoning itself is done in

the logic program.
Note:

» Both types of outsourcing may be used together in a program.
» External sources may combine both use cases.
» Important: Both usages are based on the same language features!
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Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.
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Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).
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Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

» The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).
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Computation Outsourcing

On-demand Constrains

» Constraints of form
« &forbidden|p;, . .., p,]()
eliminate certain extensions of predicates py, .. ., p,.

» Advantage:
Explicit grounding of ASP constraints representing the forbidden
combinations is avoided
(cf. constraint ASP [Ostrowski and Schaub, 2012]).

» The external evaluation may notify the reasoner about reasons for
conflicts to restrict the search space (see later).

» Example:
Efficient planning in robotics where external atoms verify the
feasibility of a 3D motion [Erdem et al., 2016b].
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Computation Outsourcing (cont’d)
Accessing Procedural Computations

» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.
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Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].
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Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].
Complexity Lifting

» Computations with a complexity higher than the complexity of
ordinary ASP programs.
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Computation Outsourcing (cont’d)

Accessing Procedural Computations
» Accessing algorithms which cannot (easily or efficiently) be
expressed by rules.

» Example:
AngryHEX is an Al agent for the game AngryBirds that needs to
perform physics simulations [Calimeri et al., 2013b].

Complexity Lifting

» Computations with a complexity higher than the complexity of
ordinary ASP programs.

» External sources can also be other ASP or HEX programs, which
allows for encoding other formalisms of higher complexity in HEX
programs, e.g., abstract argumentation frameworks [Dung, 1995].

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Information Outsourcing

Data Sources

» RDF triplet stores:

p(X,Y) « url(U), &df[U|(X,Y,Z)
Geographic data

Description logic ontologies
Multi-context systems

vV v v v

Relational databases
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Information Outsourcing

Data Sources

» RDF triplet stores:
p(X,Y) « url(U), &df[U|(X,Y,Z)
» Geographic data
» Description logic ontologies
» Multi-context systems
» Relational databases

Note:
Some external sources may realize a combination of data and
computation outsourcing (e.g. complex queries over ontologies).
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Application Scenarios
Modeling Procedure

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Modeling an Application

How to realize an application on top of HEX-programs?
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Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
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Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.
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Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.
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Modeling an Application

How to realize an application on top of HEX-programs?

Typical Procedure

1. Identify and realize the required external atoms.
2. Write the HEX-program which uses these external atoms.

These steps might be repeated or interleaved.

External atoms might be reused for multiple applications.
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Application Scenarios

Examples
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Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)
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Applications of HEX-Programs
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Applications of HEX-Programs

Some examples:
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Applications of HEX-Programs
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Applications of HEX-Programs

Some examples:

>

vV vV v vV v v Y

Queries of Web resources (RDF triplet stores, social graphs, etc)
Multi-context Systems (interconnection of knowledge-bases)
DL-programs (integration of ASP with ontologies)

Constraint ASP (programs with constraint atoms)

Physics simulation (e.g. AngryBirds agent)

Route planning (possibly semantically enriched)

Robotics applications (planning)

ACTHEX (programs with action atoms)
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Example: Semantic Web Application

Example: Friend-of-a-Friend
Use the FOAF (Friend-of-a-friend) RDF schema to return all pairs of
nicknames that know each other, as stored in a FOAF RDF datasource:

explore("http://{Nick).livejournal.com/data/foaf”)

triple(S, P, O) < &rdf[What|(S, P, O), explore(What)

knows(Nick;, Nick;) < triple(Id;, "http://xmins.com/foaf/0.1/knows”, Id,),
triple(Id;, "http://xmins.com/foaf/0.1/nick”, Nick;), Nick; < Nick;,
triple(Id,, “http://xmins.com/foaf/0.1/nick”, Nick;).

knows(A, C) < knows(A, B), knows(B, C)

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Example: Semantic Web Application (cont'd)

Example: Recursive FOAF querying with limited depth

explore("http://(Nick).livejournal.com/data/foaf”)
explore_to(What, 3) < explore(What)
triple_at(S, P, O, D) < &rdf|Uri](S, P, O), explore_to(Uri,D), D > 1
explore to(U,D;) <+ D,=D; — 1,
triple_at(Id, "http://www.w3.0rg/2000/01/rdf-schema#seeAlso”, U, D, ),
triple_at(Id, *http:/xmins.com/foaf/0.1/nick”, Nick, D)
found(Nick) < triple_at(S, "http://xmins.com/foaf/0.1/nick”, Nick, D).
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Example: Physics Simulation
Example: AngryHEX

Fundamental strategy:
Maximize the estimated damage to obstacles and pigs.

shootable(O, Type, Tr) < &shootable|O, Tr, V , Sx, Sy, Sw, Sh, B, bb|(0),
birdType(B), velocity(V), objectType(O, Type),
slingshot(Sx, Sy, Sw, Sh), trajectory(Tr)
1g1(0, Tr) V ntgt(O, Tr) < shootable(O, Type, Tr)
«— target(X, _), target(Y, ), X #Y.
<« target(_, Ty), target(_, T5), T) # T
target_ex < target(_, )
<— nottarget_ex.
directDmg(O, P, E) < target(O, Tr), objectType(O, T), birdType(Bird),
dmgProbability(Bird, T, P),
energyLoss(Bird, T, E)
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Example: Physics Simulation

Example: AngryHEX (cont'd)

exDirectDmg(0) «+ directDmg (O, _, )
nexDirectDmg(O) < not exDirectDmg(0O), objectType(O, -)
goodObject(0) + objectType(O, pig)
goodObject(0) + objectType(O, mt)
«~nexDirectDimg(0), goodObject(0) [1Q4, O, nexDirectDmg]
(

«nexDirectDmg(O). [l@Q1, O, nexDirectDmg]
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The DLVHEX-System

(7
+% DLVHEX
http://www.kr.tuwien.ac.at/research/systems/dlvhex

» Based on GRINGO and CLASP from the Potassco suite €3

» Supported platforms: Linux-based, OS X, Windows.
Pre-compiled binaries available.

» External sources are implemented as plugins using a plugin API
(available for C++ or Python).

» Support for the ASP-Core-2 standard.

» Online demo:
http://www.kr.tuwien.ac.at/research/systems/
dlvhex/demo.php.

» User manual available (see system website).
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http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

System Architecture

DLVHEX core

Evaluation o) ) rﬁ\\
program ~’| Framework ~ | L_%_\
1 Model ~ 1
.| Generators A | ASP Solver
ASP o HEX: Post o] UFS O
Grounder i Grounder Propagator © Checker ‘ SAT Solver

i

Figure: Architecture of DLVHEX
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Outline

The DLVHEX-System
Usability and System Features

Answer Set Programming with External Source Access Reasoning Web Summer Sehool 2017



Python Programming Interface

More convenient interface

Previously only C++ support, but Python preferred by many developers:
» No overhead due to makefiles, compilation, linking, etc.
» High-level features.

» Negligible overhead compared to plugins implemented in C++.

E Reasoning C++ Program- | | .
E Component  |] ming Interface H| C++ Plugins |
E I :

Python Program-
ming Interface

<—~>| Python Plugins |

................................................

DLVHEX

Figure: Architecture of the Python Programming Interface
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Python Programming Interface (cont'd)

Example
Program

ry: start(s).
=9 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).
compute the nodes reachable from a start node s in a graph.
Implementation of &edge[X](Y):

def edge(x):

graph=((1,2),(1,3),(2,3)) # simplified implementation
for edge in graph: # search for out—edges of node x
if edge[0]==x.intValue ():
dlvhex.output ((edge[1],)) # output edge target

def register ():
prop = dlvhex.ExtSourceProperties () # inform dlvhex about
prop.addFiniteOutputDomain (0) # finiteness of the graph
dlvhex .addAtom(”edge”, (dlvhex.CONSTANT, ), 1, prop)
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Outline

The DLVHEX-System

Exploiting External Source Properties
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From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.
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From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.
Idea

» Developers of external sources and/or implementer of HEX-program
might have useful additional information.

» Provide a (predefined) list of possible properties of external sources.

» Let the developer and/or user specify which properties are satisfied.

» Algorithms exploit them for various purposes, most importantly:

» efficiency improvements and
» language flexibility (reducing syntactic restrictions).
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From Black-box to Grey-box

Overcoming the Evaluation Bottleneck

» By default, external sources are seen as black boxes.

» Behavior under an interpretation does not allow for drawing
conclusions about other interpretations.

» Algorithmic improvements require
meta-information about external sources.
Idea
» Developers of external sources and/or implementer of HEX-program
might have useful additional information.
» Provide a (predefined) list of possible properties of external sources.
» Let the developer and/or user specify which properties are satisfied.
» Algorithms exploit them for various purposes, most importantly:

» efficiency improvements and
» language flexibility (reducing syntactic restrictions).

Important:
User specifies them but does not need to know how they are exploited!
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Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.
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Specifying Properties

Available properties (examples)
» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).
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Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)

Adds integers X and Y and is true for their sum Z.

It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.

The 0-th output is no greater than the 0-th input (wrt. some ordering).
» Three-valued semantics:

The external source can be evaluated under partial interpretations.
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Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

» Well-ordering: &decrement[X](Z)(wellordering 0 0)
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

» Three-valued semantics:
The external source can be evaluated under partial interpretations.

> ...

How to specify them?
» During development of external source using the plugin API.
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» Functionality: &add[X, Y](Z)(functional)
Adds integers X and Y and is true for their sum Z.
It provides exactly one output for a given input.

» Well-ordering: &decrement[X](Z)(wellordering 0 0)
Decrements a given integer.
The 0-th output is no greater than the 0-th input (wrt. some ordering).

» Three-valued semantics:
The external source can be evaluated under partial interpretations.

> ...
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» During development of external source using the plugin API.
» As part of the HEX-program using property tags ( - - - ).
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Specifying Properties

Available properties (examples)

» Functionality: &add[X, Y](Z)(functional)

Adds integers X and Y and is true for their sum Z.

It provides exactly one output for a given input.
» Well-ordering: &decrement[X](Z)(wellordering 0 0)

Decrements a given integer.

The 0-th output is no greater than the 0-th input (wrt. some ordering).
» Three-valued semantics:

The external source can be evaluated under partial interpretations.

> ...

How to specify them?
» During development of external source using the plugin API.

» As part of the HEX-program using property tags ( - - - ).
Example:
&greaterThan|p, 10]() is true if -, .\, ¢ > 10.
It is monotonic for positive integers.
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Exploiting Properties for Efficiency Improvement
Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.

» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.
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Exploiting Properties for Efficiency Improvement

Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.
» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.

Example

» We evaluate &diff[p, q|(X) under I = {p(a),q(b)}.
» It is true for X = a (and false otherwise), i.e., I = &diff[p, q](a).
» = Learn nogood N = {p(a);~q(a);~p(b).q(b), ~&diff [p, q](a)}-
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Exploiting Properties for Efficiency Improvement
Conflict-driven Solving
» ASP program is internally represented by nogoods
(sets of literals which cannot be simultaneously true).
» Additional nogoods learned from conflicting interpretations.

» HEX-solver further learns nogoods from external sources which
describe parts of their behavior to avoid future wrong guesses.

Example

» We evaluate &diff[p, q|(X) under I = {p(a),q(b)}.
» It is true for X = a (and false otherwise), i.e., I = &diff[p, q](a).

» = Learn nogood N = {p(a);~q(a);~p(b).q(b), ~&diff [p, q](a)}-
Exploiting Properties

» Known properties used to shrink nogoods to their essential part.

» Example: &diff[p, ¢](X) is monotonic in p:
Shrink above nogood N to N’ = {p(a), —q(a), q(b), ~&diff [p, q](a)}.
(If p(b) turns to true, &diff[p, q](a) is still true = —p(b) not needed.)
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Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.
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Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example

ry: start(s).
= { ry: reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).}
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Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example
ry: start(s).
=194 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!
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Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example
ry: start(s).
=194 reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!
» But: overly restrictive.
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Exploiting Properties for Language Flexibility
Grounding and Safety

» External atoms may introduce new constants: value invention.
» = Can lead to programs which cannot be finitely grounded.

Example

_ { ry: start(s).

ry: reach(X) < start(X). r3: reach(Y) < reach(X), &edge[X](Y).}

Solution: Syntactic Restrictions (Safety)

» Traditionally: strong safety; essentially no recursive value invention!
» But: overly restrictive.

Exploiting Properties
» Properties may allow for identifying finite groundability even in

presence of recursive value invention (in some cases).

» Example:
Known finiteness of the graph above allows for establishing safety.
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Outline

DLVHEX in Practice
Case Study (Demo)
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Use Case: Semantic Trip Planning in Vienna

U-Bahn-Netz
Wien

Stand: 2013

s & siovonniten

Requirements
» Find shortest trip visiting predefined locations
» Long trip = add lunch location using an ontology
» Choose restaurant depending on weather report
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Trip Planning

» Transport data might be:

» Extremely large
» Remote/not accessible

» Access external transport information
(information outsourcing)

» Use dedicated algorithm to compute shortest connection
(computation outsourcing)

External atom:
&route[File, Locl,Loc2] (Stpl, Stp2,Costs, Line)

=- Obtain shortest trip by using weak constraints
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Adding Lunch Location

» Adjustment of the trip based on its length

» Add on-demand constraint (no output needed)

» Boolean output depends monotonically on the input
» Specify according property

External atom:
&needRestaurant [trip, Limit] ()

Introduces cyclic dependency, not strongly safe:

—————&route[F,L1,L2] (S1,S2,C,L) «————

destination (L) trip(s,X,Y,C,T)

\—> chooseRestaurant (R,L) —» &needRestaurant[trip,Limit] () J
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Partial Evaluation

» ¢needRestaurant [trip,Limit] () usually evaluated
only after extension of trip is decided

» Truth value not fixed before

» Often truth value can be decided early during search

» Partial assignments: atoms can be true, false or unassigned

» Use both methods isTrue() and isFalse()
» Everything else is unassigned

» Use both methods output() and outputUnknown() to declare outputs
> All other outputs are implicitly false

v

Requirement: assignment monotonicity

Example
Learned nogood: {—#(0,1),#(1,1),2(2,1),1(3, 1), &nR[t,3]()}
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DL-Lite Plugin

v

We use the DL-Lite Plugin for semantically enriched route planning
(inspired by [Eiter et al., 2016c])

v

Interfaces to OWL ontologies using DL reasoner

v

Provides external atoms for concept and role queries:
» &cDL[File, rp, rm, cp,cm, C] (X)
» &rDL[File, rp, rm, cp, cm,R] (X, Y)

v

Bidirectional interaction by adding elements to concepts and roles,
resp. to their complements

Link:
http://www.kr.tuwien.ac.at/research/systems/divhex/dlliteplugin.html
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Restaurant Ontology

BeerGarden C Restaurant Location(Karlsplatz)

BeerGarden C —IndoorRestaurant  Location(Museumsquartier)
IndoorRestaurant T Restaurant Location(Praterstern)
IndoorRestaurant T —~BeerGarden BeerGarden(bgl)
IndoorRestaurant — —WurstStand closeTo(bgl, Praterstern)

Restaurant C JcloseTo.Location  IndoorRestaurant(irl)
WurstStand T Restaurant closeTo(irl, Museumsquartier)
WurstStand © —IndoorRestaurant  WurstStand(ws1)

closeTo(ws1, Karlsplatz)
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Weather Data

v

Goal: retrieve weather data from http://openweathermap.org/

v

Importing dynamic data from remote location

v

General plugin for retrieving JSON data from API
» Data represented by nested key-value pairs:
{"weather": [{"id":803, "main":"Clouds",
"description":"clouds", "icon": "O4d"}] ,

v

Input type d1vhex . TUPLE for arbitrary number of constants
» Provide sequence of keys

External atom:
&getJSON [Url, Keys.TUPLE] (Value)
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Summary of the Case Study

» Encoding uses four different external atoms in combination
» sroute-Plugin for information and computation outsourcing

» g&needRestaurant-Plugin for external check
» DL-Lite-Plugin for interfacing an external DL-reasoner

> &getJson-Plugin for accessing remote information on the web

» Complete implementation and more examples at:
https://github.com/hexhex/manual/tree/master/RW2017/
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DLVHEX in Practice

Further Use Cases
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HEX” Programs

» By value invention external atoms can generate witnesses
» Used to model query answering from existential rules

Example
Not possible in standard ASP:

3X: office(Y,X) < employee(Y).

Encoding with external atom:

office(Y,X) < employee(Y), &exists[r;, Y](X).
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HEX Programs with Function Symbols

» External atoms can simulate composition and decomposition of
function terms

» Allows external data type checking and argument generation
Example
Not possible in standard ASP:

q(f (X)) < p(X).
r(Y) < q(f(Y)).

Encoding with external atom:

q(A) = p(X), &omplf, X|(A).
r(Y) < q(B), 8decomp|B](f,Y).
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ACTHEX

» Extension of HEX for execution of declaratively scheduled actions
» Action atoms in rule heads operate on an external environment

» Environment can influence truth values of external atoms
» Enables stateful behaviour

Example

#obot|clean, kitchen){c,2} < night
#obot|clean, bedroom]{c,2} < day
#obot|goto, charger|{b, 1} < &sensor|bat](low)
night V day +
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Constraint HEX Programs

» Grounding issues when encoding constraints in ASP
» Contain ordinary, external and constraint atoms
» Comparisons of arithmetic expressions

» Allow to combine diverse background theories

Example

food(P) < &sql[“Select price from Food”](P)
drink(P) « &sql[“Select price from Drink”](P)
inMenu(F,D) V outMenu(F, D) < food(F), drink(D)
F + D < P < inMenu(F,D), max_price(P)

Encoding of constraint with external atom:

con(F,+,D,<,P)V con(F,+,D,>, P) < inMenu(F, D), max_price(P)
< not &check[con]()
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Nested HEX [Eiter et al., 2013]

» External atoms for evaluating subprograms and inspecting their

answer sets:

&callhex, &callhexfile, &answersets, &predicates, &arguments

» A new instance of DLVHEX is called and results stored in an
answer cache assigning unique handles

Example

pi(x,y) <
p2(a) <
z(b {—
handle(PH

ash(PH,AH

S

—_— — — —

Answer Set Programming with External Source Access

+ &callhex["a v b

< &callhexfile|" sub.hex", p;, p2](PH)
:—"|(PH), &answersets|PH|(AH)
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Related Work

» Many approaches, different degrees of integration
» DLVPB offers access to relational databases via ODBC interface
» ONTODLYV for information retrieval from OWL ontologies, extends
ASP with classes, inheritance, relations and axioms
» DLV-EX programs early generic integration approach
> Introduction of new terms by value invention
» Only terms as inputs to external sources
» Nonmonotonic aggregates not expressible
> CLINGO supports custom functions implemented in Lua or Python

» Import extensions of user-defined predicates during grounding
» Customisable built-in atoms
» No cyclic dependencies
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Related Work (cont’d)

» CLINGO 5 provides generic interfaces for theory solving in ASP
» Semantics differs from HEX unfounded support of theory atoms
allowed = consider p < &id[p]()
» Theory atoms interrelated via external theory (orthogonal to HEX)
» No value invention based on answer set
» Well-suited for system developers, rich infrastructure

» Extensions of ASP with specific external sources:

» Constraint ASP solvers, e.g. CLINGCON, Ic2casp, ezcsp, EZSMT
» Extensions of ASP with SMT, e.g. dingo (difference logic), ASPMT
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Summary

HEX is a powerful formalism, wide range of applications
Extends ASP with external sources via API-style interface
Bi-directional interaction and value invention possible
Methodology from ASP generalises to HEX

Implemented in the DLVHEX system

> Plugins in Python and C++
» Exploiting external source properties

vV Yy v Vv Yy

44 DLVHEX

http://www.kr.tuwien.ac.at/research/systems/divhex/
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Further Resources

» All executable examples from this course:
https://github.com/hexhex/manual/tree/master/RW2017/

» Slides of tutorial “ASP for the Semantic Web” and many executable
ASP/HEX-examples:
http://asptut.gibbi.com/

» An online demo of the DLVHEX system:
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
demo.php

» Pre-built binaries of DLVHEX for Linux, OS X and Windows:

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
downloadb.html

» The source code of DLVHEX and corresponding plugins, best place
for bug reports:
https://github.com/hexhex/

» Python-based HEX implementation for a fragment of the HEX
language and a subset of features
https://github.com/hexhex/hexlite
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