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Abstract. The HEX formalism has been designed as an extension of
answer set programs that offers an abstract interface to access external
sources of information and computation, such as the World Wide Web
or description logics reasoners. The generic nature makes the extension
powerful, which has been exploited in different ways: as an end user
problem solving language, as a backend formalism, or as the basis of
a richer formalism with possibly increased expressiveness. The increas-
ing spread of HEX is paralleled with the frequently asked questions of
what HEX is, and how it can be used for problem solving. In this pa-
per, we aim to answer these questions; we consider different scenarios
and provide a methodology for applying HEX from a user perspec-
tive. Furthermore, we briefly present a collection of applications based
on HEX or derived from it, including sample snippets from associated
HEX programs.

1 Introduction

Answer Set Programming (ASP) is a declarative problem solving approach
[43,45,48], in which a problem is described by the rules of a nonmonotonic logic
program, such that the answer sets [33] (i.e., specific models) of the program
correspond to the solutions of the problem; the latter can be extracted from
the answer sets computed using an ASP solver. With the advent of efficient and
expressive such solvers (e.g., smodels [58], dlv [41], ASSAT [44], and Gringo
plus Clasp [30, 31]), this approach has been fruitfully deployed to a growing
range of applications in different areas and disciplines, cf. [8].

However, the World Wide Web and trends in distributed systems have cre-
ated a need for accessing external information sources in a program, ranging
from light-weight data access (e.g., XML, RDF, or data bases) to knowledge-
intensive formalisms (e.g., description logics reasoners), and even to informa-
tion sources not based on logical grounds (e.g., dictionaries or route planning
services). To cater for this need, HEX programs have been introduced in [13]
as an extension to nonmonotonic logic programs in which access to external
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sources is possible via designated external atoms, which abstractly define ex-
ternal predicates whose valuation is determined by external computation.

For a simple example, consider the rule

pointsTo(X,Y )← &hasHyperlink [X](Y ), url(X); (1)

informally, it obtains pairs (X,Y ) of URLs, where X actually links Y on the
Web. Here, &hasHyperlink is an external predicate associated with an external
computation function; X is the input for the latter and Y is a result. Besides
single values, also relational information (predicate extensions) can flow from
the program to external sources and back; e.g., an extended input [X , skip]
in (1) may provide a relation skip containing pairs of URLs whose linkage
should be omitted. Notably, the output Y may involve values not occurring
in the program (known as value invention), and Y may influence the input of
the atom where in practice, certain safety conditions must be obeyed [15]. This
makes the efficient evaluation of HEX programs challenging, for which advanced
techniques have been developed [13,14,16,18].

The abstract concept of an external atom has been realized in the open-
source software dlvhex3 as an API, which allows the user via a plugin mecha-
nism to tailor external atoms for her needs using Python or C++. This makes
the system very powerful; depending on the external evaluation cost, HEX pro-
grams offer a range of problem solving capacity, from Σp

2 for polynomial-time
external atoms to Turing-completeness in general.

HEX programs and dlvhex have been used for solving diverse kinds of
problems. This frequently raises the questions of prospective users what HEX

is after all, and how HEX programs or dlvhex can be exploited for solving their
applications; notably dlvhex offers a growing suite of library plugins that have
been used in different applications.

This paper addresses these questions and focuses on HEX programs as a KR
tool for problem solving, which they support at different levels of abstraction,
namely as an end user problem solving language, as a backend formalism or as
the basis of a richer formalism with possibly increased expressiveness. Besides
a methodology for using HEX programs, we further present some examples of
HEX applications. More in detail, we proceed on this as follows.

– After recalling in Section 2 HEX programs and briefly addressing some
aspects of the dlvhex system, we show in Section 3 how HEX programs
can be used for problem solving. Besides a basic methodology, which is a
strict generalization of the ASP methodology, we present typical kinds of
external sources and HEX use scenarios.

– In Section 4 we then consider some end user applications which have been
realized on top of HEX programs.

– In Section 5 we show how several extensions of the HEX formalism and
some of their internals. While some extensions increase the expressiveness
and need extensions of the internal evaluation algorithms, many others are
in fact only syntactic shortcuts and can be compiled to pure HEX programs.

3 www.kr.tuwien.ac.at/research/systems/dlvhex
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– In Section 6 we show applications that use HEX as a backend formalism for
the sake of evaluation, sometimes completely hiding HEX from the user.

After a discussion of related work in Section 7, we conclude in Section 8 with
an outlook on future topics.

This paper is in honor of Gabriele Kern-Isberner, who has worked exten-
sively on Artificial Intelligence and in particular on knowledge representation
and reasoning, and made over many years numerous important contributions
to belief change, conditional and nonmonotonic reasoning, reasoning with un-
certainty, argumentation, agents etc., based on solid and deep mathematical
foundations. Gabriele’s excellent book “Methods of Knowledge based Systems
– Foundations, Algorithms and Applications” [5], co-authored by Christoph
Beierle and now in its fifth edition, demonstrates her comprehension of the
field, and provides a coherent and formally guided introduction to the ingredi-
ents of knowledge based systems. Unfortunately, the book is only available in
German; but in the style of Cato the Elder, Thomas keeps asking her ever since
the first edition to have an English translation, so that a much larger audience
can read and enjoy it, which would be well-deserved – and that we can use it in
our English classes! In turn, we hope that Gabriele may discover the wealth of
the HEX family as a tool box for building advanced knowledge based systems,
as envisaged in her book and further supported by her many research results.

2 HEX Programs

In this section, we formally introduce the syntax and semantics of HEX pro-
grams; for more details and background, see e.g. [13, 23,24,55].

2.1 HEX Program Syntax

Let C, X , and G be mutually disjoint sets of constants, variables, and external
predicates, respectively. Usually constants (resp., variables) are denoted with
first letter in upper case (resp., lower case), while external predicates start with
‘ & ’. Elements from C ∪X are called terms. An atom is a tuple (Y0, Y1, . . . , Yn),
where Y0, . . . , Yn are terms and n ≥ 0 is the arity of the atom. Intuitively, Y0 is
the predicate name, and we often use the more familiar notation Y0(Y1, . . . , Yn).
An atom is ordinary (resp., higher-order) if Y0 is a constant (resp., a variable),
and it is ground, if all its terms are constants.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and out-
put lists, resp.), and &g ∈ G is an external predicate name. We assume that
&g has fixed lengths in(&g) =n and out(&g) =m for input and output lists,
respectively. In the ground case, the input terms Y1, . . . , Yn intuitively consist
of individual constants (e.g. joe) and predicate names (e.g. edge). An external
atom provides a way for deciding the truth value of an output tuple depending
on the input tuple and a given interpretation.
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A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, m, k ≥ 0,

where all αi are atoms and all βj are either atoms or external atoms. We let
H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where B+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βm}. A HEX program is a finite set P of rules.

A rule r is a constraint, if H(r) = ∅ and B(r) 6= ∅; a fact, if B(r) = ∅ and
H(r) 6= ∅; and nondisjunctive, if |H(r)| ≤ 1. We call r ordinary, if it contains
only ordinary atoms. We call a program P ordinary (resp., nondisjunctive), if all
its rules are ordinary (resp., nondisjunctive). Note that facts can be disjunctive.

Example 1. Consider the following program Πgoto to decide where to go for a
city trip, but exclude cities where the (external) weather report is bad.

badweather(rain). badweather(snow).

goto(paris) ∨ goto(london).

← &weatherreport [goto](W ), badweather(W ).

We guess where to go and forbid that the externally obtained weather report
&weatherreport indicates bad weather for a city in the extension of goto. ut

2.2 HEX Program Semantics

The semantics of HEX programs generalizes the well-known answer-set seman-
tics of ordinary programs [33]. Given a HEX program P , its Herbrand base,
denoted HBP , is the set of all possible ground versions of atoms and external
atoms occurring in P obtained by replacing variables with constants from C.
The grounding of a rule r, grnd(r), is defined accordingly, and the grounding
of P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless specified otherwise, X and G

are implicitly given by P . Different from the ‘usual’ ASP setting, the set C of
constants used for grounding a program is only partially given by the program
itself; in HEX, external computations may introduce new constants that are
relevant for semantics of the program.

An interpretation relative to P is any subset I ⊆HBP containing no external
atoms. We say that I is a model of atom a∈HBP , denoted I |= a, if a∈ I.

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary
Boolean function (called oracle function) f&g assigning each tuple (I, ~y, ~x)
where ~y = y1, . . . , yn and ~x = x1, . . . , xm either 0 or 1, where n = in(&g),
m = out(&g), I ⊆HBP , and xi, yj ∈C. We say that I ⊆HBP is a model of a
ground external atom a = &g [~y](~x), denoted I |= a, if f&g(I, ~y, ~x) = 1. This
definition of external atom semantics is very general; indeed an external atom
may depend on every part of the interpretation. For practical reasons, external
atom semantics is usually restricted such that it depends only on the extension
of those predicates in I that are given in the input list.

Let r be a ground rule. Then we say that
(i) I satisfies the head of r, denoted I |=H(r), if I |= a for some a∈H(r);
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(ii) I satisfies the body of r (I |=B(r)), if I |= a for all a∈B+(r) and I 6|= a
for all a∈B−(r); and

(iii) I satisfies r (I |= r), if I |=H(r) whenever I |=B(r).
We say that I is a model of a HEX program P , denoted I |=P , if I |= r for

all r∈ grnd(P ). We call P satisfiable, if it has some model.
Given a HEX program P , the FLP-reduct of P with respect to I ⊆HBP ,

denoted fP I , is the set of all r∈ grnd(P ) such that I |=B(r). Then I ⊆HBP

is an answer set of P if, I is a minimal model of fP I . We denote by AS(P )
the set of all answer sets of P .

HEX programs are a conservative extension of disjunctive [33] (resp., normal
[32]) logic programs under the answer set semantics.

Example 2 (cont’d). Assume that the weather report for paris is sun and for
london it is rain, then I |=&weatherreport [goto](sun) if I |= goto(paris), more-
over I |=&weatherreport [goto](rain) if I |= goto(london), and Πgoto has one
answer set {goto(paris)} (we omit atoms in facts of Πgoto). If weather reports
of both cities are sunny, we additionally obtain the answer set {goto(london)}.
Finally if the weather report for both cities is snow , there is no answer set. ut

2.3 Usability Issues

When realizing a project with HEX and the dlvhex reasoner, besides writing
the HEX program it is usually also necessary to write a plugin which implements
the semantics of external atoms to be used (unless an already existing plugin
can be reused). Plugins may be implemented either in Python or C++ using a
reasoner API provided by dlvhex; for details, see [26].

For the sake of performance improvements, external atom semantics imple-
mentations can further inject nogoods into the solver process, i.e., combinations
of truth values of atoms which are inconsistent with the external atom seman-
tics and cannot occur in any answer set. This allows for eliminating inconsistent
guesses earlier and might speed up the solving process.

Besides defining external atoms, plugins may also (i) rewrite the input pro-
gram, and (ii) post-process answer sets. Rewriting the input is useful for creat-
ing language extensions (see Section 5) or for changing the behavior of an input
program by modifying its code (e.g., for performance reasons or for debugging).
Post-processing answer sets allows for translating the answer sets into a more
application-specific presentation. This is useful when HEX is used as a backend
for other KR formalisms, cf. Section 6.

The dlvhex user manual [26] presents examples for HEX programs and
the corresponding implementations of external atom semantics. Furthermore,
it describes different ways of obtaining, building, and installing the dlvhex
solver for Linux (in particular Ubuntu), Mac OS X, and soon Windows.

3 KR Problem Solving using HEX

In this section, we show how the HEX family can be used for declarative problem
solving. To this end, we first present the basic methodology in Section 3.1, and
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show how modeling techniques from ordinary ASP can be generalized to HEX.
We provide methodology for using external atoms in Section 3.2 and further
distinguish typical kinds of external sources. Roughly, one can classify them as
outsourcing of either computation or information, or as a combination thereof.
Afterwards, we present three kinds of use case scenarios in Section 3.3. HEX

programs can either directly be used as a formalism for modeling end user
applications, as a basis for language extensions (i.e., extensions of HEX which
are compiled into plain HEX), or as backend for the realization of other KR
formalisms. The three use cases are orthogonal to the types of external sources
as in any scenario one may use all types of external sources.

3.1 Basic Methodology

Because the HEX family is an extension of ASP, all modeling techniques from
ASP may also be used in HEX programs. One of the most important examples
is the guess and check paradigm, where default negation or disjunctive rules
are used to generate a superset of the intended solutions (guessing part), and
constraints are used to eliminate spurious candidates (checking part). For in-
stance, if we assume that facts over predicates node and edge define a graph,
then the well-known graph 3-colorability problem can be solved by guessing all
possible colorings of the nodes of a graph using the disjunctive rule

g : color(red , X) ∨ color(green, X) ∨ color(blue, X)← node(X), (2)

and eliminating all colorings which assign the same color to adjacent nodes
using the constraint

c : ← color(C,X), color(C, Y ), edge(X,Y ). (3)

However, unlike in ASP, HEX programs allow for using external atoms in ad-
dition. They can occur both in the guessing and in the checking part. In the
former case, they may be used to import individuals over which guessing is
performed. For instance, one may replace the atom node(X) in the body of
rule (2) by &node[](X) to import the nodes of the graph. In the latter case,
external atoms can be used in the body of constraints to check given conditions.
For instance, rule c may be replaced by

c′ : ← not&check [color , edge](), (4)

where &check [color , edge]() is true if color is a valid 3-coloring wrt. edge and
false otherwise.

The saturation technique is an advanced modeling technique for solving
problems up toΣP

2 -completeness, by exploiting the subset-minimality of answer
sets for checking whether a property holds for all guesses in a search space [20].
A typical example is the check if a graph is not 3-colorable, i.e., all possible
colorings are invalid. Also here, the checking part may employ external atoms.

For more details about ASP modeling techniques we refer to [20,29].
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3.2 Methodology for Using External Atoms

In general, one can roughly distinguish between two main usages of external
sources that we call computation outsourcing and information outsourcing, re-
spectively, and combinations thereof. We stress that this distinction concerns
the usage in applications, as both usages are based on the same language con-
structs. For each of them we will describe some typical use cases that serve as
usage patterns for external atoms when writing HEX programs.

Computation Outsourcing means to send the definition of a subproblem
to an external source and retrieve its result. The input to the external source
uses predicate extensions and constants to define the problem at hand and the
output terms are used to retrieve the result, which can in simple cases also be
a Boolean decision.

On-demand constraints are of the form ← &forbidden[p1, . . . , pn]() eliminate
certain extensions of predicates p1, . . . , pn and are a special case of compu-
tational outsourcing, see also the 3-colorability example above. The external
evaluation of such a constraint can return reasons for conflicts to the rea-
soner in order to restrict the search space and avoid reconstruction of the same
conflict [14]. This technique avoids explicitly grounding the forbidden combi-
nations of atoms as constraints and reduces the size of the ground program.
On-demand constraints have been used for efficient planning in robotics where
external atoms verify the feasibility of a 3D motion [35,56].

Computations that cannot (easily) be expressed by rules. Outsourcing compu-
tations also allows for including algorithms which cannot (easily or efficiently)
be expressed by rules. As a concrete example, an artificial intelligence agent
for the skills and tactics game AngryBirds needs to perform physics simula-
tions [10]. This requires floating point computations which can not be done by
rules in a practical way (this would either come at the costs of very limited
precision or a blow-up of the grounding) therefore the physics simulations are
integrated with game playing rules as external atoms in a HEX program.

Complexity lifting. This is another kind of computational outsourcing that al-
lows for realizing computations with a complexity higher than the complexity
of ordinary ASP programs. The external atom serves than as an ‘oracle’ for
deciding subprograms. While for the purpose of complexity analysis of the for-
malism, it is often assumed that external atoms can be evaluated in polynomial
time [27]4, as long as external sources are decidable there is no practical reason
for limiting their complexity. External sources can also be other ASP or HEX

programs, which allows for encoding other formalisms of higher complexity in
HEX programs, e.g., abstract argumentation frameworks [12].

Information Outsourcing refers, in contrast to computational outsourcing,
to external sources which import information, while reasoning itself is done in
the logic program.

A typical example can be found in Web resources which provide information
for import, e.g., RDF triple stores [40] or geographic data [47]. More advanced

4 Under this assumption, deciding the existence of an answer set of a propositional
HEX program is ΣP

2 -complete.
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use cases are multi-context systems, which are systems of knowledge-bases (con-
texts) that are abstracted to acceptable belief sets (roughly speaking, sets of
atoms) and interlinked by bridge rules that range across knowledge bases [7];
access to individual contexts has been provided through external atoms [6].
Also sensor data, as often used when planning and executing actions in an
environment, is a form of information outsourcing (cf. ACTHEX [4]).

Combinations. It is also possible to outsource computation and information
at the same time. A typical example are logic programs with access to Descrip-
tion Logic knowledge bases (DL KB), called DL-programs [22]. A DL KB not
only stores information, but also provides reasoning services. This allows for in-
terleaving reasoning within the DL KB and the logic program with information
that flows across the external atom API in both directions.

3.3 Use Scenarios

One can distinguish between three main types of usages of the HEX formalism.
Note that the following classification is orthogonal to the types of external
sources above, i.e., each of the following scenarios may make use of various
types of external atoms.

End user applications based on HEX. The first scenario is the model-
ing of end-user applications. The HEX language is directly used for modeling
a problem at hand and computing its solutions. Note that the problem in-
stance formally consists both of the HEX program and the external sources,
but external sources may be reused for different applications if suitable.

The typical procedure when modeling an end user application starts with
identifying and realizing the required external sources, followed by writing a
HEX program which makes use of these external sources. The two steps may be
repeated in order to refine the encoding, i.e., while writing the HEX program,
the need for further or modified external sources may arise. In some cases,
external atoms of other applications can be reused. Some existing plugins are
generic and useful for different applications, e.g., string manipulation functions
and an interface to RDF triple stores. We present such applications in Section 4.

HEX language extensions. It turns out that some advanced applications call
for additional language features as they can not or not easily by realized in pure
HEX programs. A possible relief are language extensions, of which some may
be compiled to pure HEX syntax, while others actually increase expressiveness.
However, even in cases where language extensions are only syntactic shortcuts,
they still not only increase the user comfort but also give the reasoner more
specific information about the user’s intents (compare this with a constraint
← Body vs. an equivalent rule p← Body ,not p in ordinary ASP). This can be
exploited to improve efficiency. We present such extensions in Section 5.

HEX as backend formalism. Finally, other formalisms may be implemented
on top of HEX programs (or extensions thereof) using an appropriate transla-
tion. Instead of encoding the end user application directly, its encoding as a
HEX program is automatically generated from a different representation. This
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step can either be hidden from the user, or can be transparent such that mod-
ifications (e.g., extensions or improvements) can be made prior to evaluation.
We present existing applications using HEX as a backend in Section 6.

4 End User Applications Based on HEX

In this section, we consider some end applications of HEX programs, which
have been conceived in different domains.

In the context of the Semantic Web, HEX was applied to connect SPARQL
and RDF querying with logic programming rules [51]. Moreover, HEX was used
for archaeological research in order to combine geographical and cultural knowl-
edge from various ontologies [47], and for adapting user interfaces targeted at
elderly and disabled people by combining ontologies about user profiles with
rules about potential user interface styles [59].

As described above, an important use case of HEX is planning: the DLVC

planning language can use external atoms for determining effects of actions [49];
moreover in robotic planning, external atoms have been used to perform checks
on feasibility of actions or action costs [35, 56]. In the following we describe a
specific planning application realized with HEX in more detail.

Route planning. While many commercial and free route planning applica-
tions exist (Google Maps is currently perhaps the most popular), the supported
query types are usually limited. In contrast, an implementation in HEX pro-
grams allows for an easy addition of side constraints and thus tailoring to very
specific use cases. As a concrete use-case, [16] considered tours with multiple
stops (e.g. at shops, a pharmacy, kindergarden, etc) using an external source
that supports only point-to-point queries. Side constraints may include restric-
tions on the order of stops, the tour length, or opening hours at the stops.

Related to route planning is a trip planning scenario. When planning a
holiday trip with multiple stops, the order of the stops is often irrelevant, but
one wants to spend a certain number of days at each location. However, due
to shifts of the dates, the overall price often differs significantly with different
sequences. In addition to the sequence of the locations, also other considerations
affect the price. E.g. instead of a multi-stop flight through all locations, one may
book a return flight to one of them plus local flights from there to the others;
sometimes special offers for two-way-tickets make this more attractive. A logic
program can automatically generate flight plans according to the constraints
and enquire their ticket prices by an external atom that internally uses an online
flight booking service. An additional weak constraint can select the cheapest.

AngryHEX. The annual AIBirds Competition5 is a competition for AI agents
based on the popular Angry Birds6 game, which is about using a slingshot to
shoot birds of different types at pigs placed on a scene in order to destroy them.
The pigs are usually protected by obstacles of different types. The game uses a
realistic physics simulation, including gravity and statics. In the competition,

5 https://aibirds.org
6 https://www.angrybirds.com
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agents are given the positions and dimensions of the objects in the scene and
need to return the angle and velocity for shooting the next bird.

The AngryHEX agent [38] is implemented on top of HEX programs. The
basic strategy is to maximize the estimated damage to obstacles and pigs for
all possible targets. Plain ASP is ill-suited for this application as the computa-
tion involves physics simulation and floating point numbers. Therefore, a HEX

program was used to realize the basic strategy including the optimal selection
of the target, while low-level numeric computations have been outsourced. The
agent participated in the competition since 2012 and ranked second in 2015.

HEX programs with nested program calls. Notably, dlvhex can be used
to ‘call’ HEX programs from other HEX programs, which we refer to as the
called program and the host program, respectively. Specifically, one can process
the collection of answer sets of a different program, and e.g. reason about it. To
this end, dedicated external atoms for evaluating subprograms and inspecting
their answer sets are available, cf. [25, 53].

When a subprogram call (corresponding to the evaluation of a special ex-
ternal atom) is encountered in the host program, the external atom internally
creates another instance of dlvhex to evaluate the subprogram. The result is
then stored in an answer cache and gets a unique handle which can be later
used to reference the result and access its components (e.g., predicate names,
literals, arguments) via other external atoms. The subprogram can either be
directly embedded in the host program, or stored in a separate file. In the latter
case, code reuse is easy and libraries for solving re-occurring subproblems in
ASP applications, e.g., graph problems or combinatorial optimization problems,
can be built, where updates are automatically reflected in the call program.

To this end, we use external atoms &callhexn , &callhexfilen , &answersets,
&predicates, and &arguments, where

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

n ≥ 0, allow to execute a subprogram given by a string P or in a file FN, respec-
tively; here n specifies the number of predicate names pi, 1 ≤ i ≤ n, used to
define the input facts. When evaluating such an external atom on an interpre-
tation I, the system adds all atoms pi(~t) in I as facts to the specified program,
creates another dlvhex instance to evaluate it, and returns a symbolic handle
H as result. A handle is a unique integer that represents a certain program
answer cache entry. For convenience, we omit the subscript n in &callhexn and
&callhexfilen as it is clear from the context.

Example 3. We use two predicates p1 and p2 to define the input to the sub-
program sub.hex (n = 2), i.e., all atoms over these predicates are added to the
subprogram prior to evaluation. The call derives a handle H as result.

p1(x, y); p2(a); p2(b);

handle(H) ← &callhexfile[sub.hex, p1, p2](H)

In the implementation, handles are consecutive numbers starting at 0. The
unique answer set of the program is {handle(0), p1(x, y), p2(a), p2(b)}. ut
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Formally, given an interpretation I, f&callhexfilen
(I,file, p1, . . . , pn, h) = v

with v= 1 if h is the handle to the result of the program in file file augmented
with the facts over predicates p1, . . . , pn that are true in I, and v = 0 other-
wise. The formal notion and use of &callhexn to call embedded subprograms is
analogous to &callhexfilen .

Example 4. Consider the following program:

h1(H) ← &callhexfile[sub.hex](H)
h2(H) ← &callhexfile[sub.hex](H)
h3(H) ← &callhex [a; b← not c](H) ut

The rules execute the program sub.hex and the embedded program Pe =
{a; b ← not c}, with no facts being added. The single answer set is {h1(0),
h2(0), h3(1)} or {h1(1), h2(1), h3(0)} depending on the order in which the sub-
programs are executed (which is irrelevant). Note that the program in sub.hex
is called in two places but executed only once; Pe is (possibly) different from
sub.hex and thus evaluated separately.

Now we want to determine how many answer sets a program has. For this
purpose, we design an external atom &answersets[PH ](AH ) that associates
subprograms with their answer set handles. Formally, for an interpretation I,
we have f&answersets(I, hProg , hAS ) = v with v = 1, if hAS is a handle to an
answer set of the program with program handle hProg , and v = 0 otherwise.

Example 5. The single rule

ash(PH ,AH )← &callhex [“a ∨ b←”](PH ),&answersets[PH ](AH )

calls the embedded subprogram Pe = {a ∨ b ←} and retrieves pairs (PH ,PA)
of handles to its answer sets; here &callhex [”a ∨ b←”](PH ) returns a handle
PH = 0 to the result of Pe, which is passed to the atom &answersets[PH ](AH ).
The latter returns the handles 0 and 1, as Pe has two answer sets ({a} and {b}).
The overall program has thus the single answer set {ash(0, 0), ash(0, 1)}. As for
each program the answer set handles start at 0, only a pair of a program and
an answer set handle uniquely identifies an answer set. ut

Using the external atoms from above, it is now easy e.g. to count the answer
sets of a subprogram by determining the largest valid handle to an answer set.
Similarly, external atoms &predicates and &arguments can be used to inspect
answer sets; we refer to [25] for details.

5 HEX Language Extensions

We now turn to some extensions of HEX programs that are motivated by ap-
plication needs.

HEX programs with function symbols. Uninterpreted function symbols,
as for instance do(a, s) to represent the follow up of a situation s after executing
an action a, can be easily realized in HEX using external atoms; we thus can
extend the language by such function symbols as syntactic sugar.
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Formally, the set X ∪ C of terms is enriched, given a set F of function
symbols, to the smallest superset T of X ∪ C such that for each f ∈ F of arity
n, it holds that {f(t1, . . . , tn) | t1, . . . , tn ∈ T } ⊆ T ; technically, it is possible
to let F ⊆ C.

Using external atoms, it is possible to simulate composition and decom-
position of function terms, as described in [9]. For every k ≥ 0, two external
predicates &compk and &decompk are defined that have k+ 1 (resp., 1) input
arguments and 1 (resp., k + 1) output arguments; the oracle functions are

f&compk
(I, f,X1, . . . , Xk, T ) = f&decompk

(I, T, f,X1, . . . , Xk) = v,

with v = 1 if T = f(X1, . . . , Xk) and v = 0 otherwise. Intuitively, &compn

constructs a nested term from a function symbol and its term arguments (pos-
sibly nested themselves), and &decompn extracts the function symbol and the
term arguments from a nested term.

Concrete occurrences of function terms in rules can now be eliminated by
using auxiliary variables and adding appropriate &compn and &decompn atoms
to the rule bodies. This will be clear from an example.

Example 6. Consider the following HEX program P with function symbols and
its rewriting Tf (P ) to a plain HEX program:

P : q(z); q(y)
p(f(f(X))) ← q(X)

r(X) ← p(X)
r(X) ← r(f(X))

Tf (P ) : q(z); q(y)
p(V ) ← q(X),&comp1 [f,X](U),

&comp1 [f, U ](V )
r(X) ← p(X)
r(X) ← r(V ),&decomp1 [V ](f,X)

Intuitively, Tf (P ) first builds f(f(X)) for all X on which q holds using two
atoms over &comp1 , and then extracts X from derived r(f(X)) facts using a
&decomp1 -atom. ut

Realizing function symbols on top of external atoms allows for a better
control of their processing. For example, the construction of new nested terms
may be subject to additional conditions which are integrated into the seman-
tics of the external predicates &compk and &decompk . A concrete example is
data type checking, i.e., checking whether the arguments of a function term are
in a given domain. Another example is automatic computation of some argu-
ment from others; e.g., in building roman(8, viii) from 8, the first argument is
converted to Roman number representation.

HEX programs with action atoms. ACTHEX [4] is an extension of HEX

programs which allows for the execution of declaratively scheduled actions. To
this end, action atoms are introduced to rule heads, which operate on an en-
vironment and may modify it. The environment can be seen as an abstraction
of realms outside the logic program. Thus, in contrast to ASP and HEX pro-
grams, which are stateless, ACTHEX allows for modifications of the external
environment without wrapping the solver in a procedural language. We here
review ACTHEX programs at a glance and refer to [4, 28] for details.

Intuitively, the evaluation of an ACTHEX program starts with evaluating it
as an ordinary HEX program. Answer sets that optimize an associated objective
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function are best models. The evaluation algorithm selects a single best model
which determines a sequence of executable action atoms called the execution
schedule. These actions are then executed and possibly modify the environment.

The ACTHEX language provides a set A of action predicate names, which
start with #. An action atom is of the form #g [~Y ]{o, p}[w : l], where #g ∈ A
is an action predicate name, ~Y = Y1, . . . , Yn is the input list, o ∈ {b, c, cp} is
the action option which declares actions as one of brave, cautious or preferred
cautious, and the optional integer attributes p, w, and l are called precedence,
weight, and level. Rules and programs are then defined as in ordinary HEX

programs but may contain action atoms in rule heads.
The semantics of external atoms is generalized such that the environment

may influence its truth value. To this end, a ground external atom &g [~y](~x)
with k-ary input and l-ary output has an associated a 2+k+l-ary Boolean oracle
function f&g; the atom &g [~y](~x) is true wrt. assignment I and environment
E, if f&g(I, E, ~y, ~x) = 1. Best models are defined based on level and weight
of actions, and actions are executable wrt. a best model depending on their
action option o. An execution schedule SI for a best model I is a sequence
of all actions executable in I that respects action precedence. The effect of
executing a ground action #b[y1, . . . , yn]{o, r}[w : i] on an environment E is
modeled by a (2+n)-ary function f#b that determines a follow-up environment
E′ = f#b(I, E, ~y).

Example 7 (from [28]). The following ACTHEX-program controls a robot ca-
pable of executing a parameterized action #robot , where an external &sensor
predicate enables to access sensor data.

#robot [clean, kitchen]{c, 2}[1 : 1]← night

#robot [clean, bedroom]{c, 2}[1 : 1]← day

#robot [goto, charger ]{b, 1}[1 : 1]← &sensor [bat ](low)

night ∨ day ←

Informally, in the night the kitchen should be cleaned, and during daytime
the bedroom; if the battery is low, the robot needs to go to the charger. The
option b makes this action mandatory, while the other actions are by option c
only taken if they occur in every answer set; by the disjunctive fact, this is not
the case. Note that precedence 1 of #robot [goto, charger ]{b, 1} makes the robot
recharge its battery (if needed) before any cleaning. ut

Use-cases of ACTHEX programs. ACTHEX has been used in several applica-
tions; for a more elaborative discussion, we refer to [4] and [28].

Action languages, such as the one by [34], are used to describe the relations
between actions that modify the state of the world which is described by fluents,
i.e., predicate that can change over time. Such languages can be captured by
ACTHEX, exploiting the precedence attribute of action atoms to model time.

Related to this is knowledge base update, as adding and removing state-
ments in knowledge bases maintenance can be modeled by action atoms. The
ACTHEX-programmer can in this way reason over knowledge bases and modify
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them declaratively depending on the current content. Since ACTHEX supports
iterative solving, it can be exploited for various use cases such as belief revision,
belief merging or implementing the observe-think-act cycle of agents [39].

Agents with iterative strategies do not compute solutions in a single shot
using an appropriate encoding, but in multiple steps using intermediate solu-
tions. This can be advantageous, in particular if the grounding of a monolithic
problem encoding is very large, as holds e.g. for the logic puzzles Sudoku and
Reversi. An ACTHEX Sudoku agent that iteratively adds numbers to a cell or
excludes them from the set of possible values has the potential to solve larger
instances than pure ASP can handle [28].

Constraint HEX programs. Constraint Answer Set Programming (CASP)
(see e.g. [42,46]) combines ASP with constraint programming [1]. A well-known
implementation is the clingcon system [50], which integrates Gringo, Clasp
and the constraint solver Gecode. Constraints can be encoded in plain ASP
using builtin predicates, but this quickly produces groundings of unmanageable
size; hence, a genuine support of constraints in ASP is reasonable, which can
hide instances of constraint variables in the constraint solver.

Dedicated CASP solvers, however, do not allow to integrate background the-
ories other than constraints. This motivated an integration of CASP with HEX

programs to constraint HEX programs. Such programs are strictly more general
than CASP programs, as besides constraints arbitrary background theories can
be accessed via external atoms. Technically, the integration uses a translation
of constraint HEX programs into native HEX programs, where constraints are
handled using an SMT-like [3] approach (also used by clingcon).

Informally, a constraint HEX program may contain besides ordinary and
external atoms also constraint atoms. The latter are comparisons of arithmetic
expressions that consist of (constraint) variables and constants, such as x +
y < 10. Here, x and y are constraint variables which range over a certain
domain. Different from ASP variables, constraint variables are global, i.e., each
occurrence in a program is bound to the same value; thus, the atoms x < 10 and
x > 20 can never be jointly true, even if they occur in different rules. Notably,
(upper-case) ASP variables can occur in constraint atoms (they are eliminated
by the grounder); e.g., in x + Y > 5, the ASP variable Y is substituted by
ground terms yielding ground constraint atoms.

We omit here a formal definition of constraint HEX programs, but illustrate
them by an example.

Example 8. Suppose Alice’s restaurant offers daily menus. The menus can be
selected based on the price of food and drink, where drink should be cheaper
than food and each menu should cost at most 20 Euros; menus of the limit cost
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are called exclusive. This knowledge is encoded by the following program:

r1 : food(P )← &sql [“Select price from Food”](P )

r2 : drink(P )← &sql [“Select price from Drink”](P )

r3 : max price(20)

r4 : inMenu(F,D) ∨ outMenu(F,D)← drink(D), food(F )

r5 : ← D > F, inMenu(F,D)

r6 : F +D 6 P ← inMenu(F,D),max price(P )

r7 : exclusive menu ← inMenu(F,D),max price(P ), F +D ≡ P

Here, food and drink prices are represented by atoms food(·) and drink(·),
respectively; via the external atoms &sql [·](·), all prices from the database of
the restaurant are loaded. Rule r4 generates all price combinations of menus,
while rule r5 checks that food is more expensive than drink and rule r6 that
the maximum price is not exceeded. The rule r7 checks for the existence of an
exclusive menu. Note that the constraint atom in the head of rules r6 is not
derived to be true if the body is true, but it must evaluate to true in this case.

If the database contains prices 18 and 9 for food and 5 for drink, the single
answer set contains inMenu(9, 5), and outMenu(18, 5), encoding a single menu
of 9 Euros for food and 5 Euros for drink; there is no exclusive menu. ut

Constraint HEX programs can be translated into plain HEX programs using
a dedicated external atom for constraint checking. The idea is to guess the truth
values of all constraint atoms, which are represented using a special predicate
con(·), in the program and pass the guess to external constraint checking;
the answer set candidate is eliminated if the guess is not compatible, i.e., the
corresponding constraints are not satisfiable. This is best illustrated on the
previous example.

Example 9 (cont’d). The constraint atoms D > F , F +D 6 P , and F +D ≡ P
are represented by con(D,>,F ), con(F,+, D,6, P ), and con(F,+, D,≡, P ),
and their negations by con(D,6, F ), con(F,+, D, >, P ), and con(F,+, D, 6≡
, P ). The rules r5–r7 are now replaced by the following rules:

r′5 : ← con(D,>,F ), inMenu(F,D)

r′6 : con(F,+, D,6, P )← inMenu(F,D),max price(P )

r′7 : exclusive menu ← inMenu(F,D),max price(P ), con(F,+, D,≡, P )

g1 : con(D,>,F ) ∨ con(D,6, F )← inMenu(F,D)

g2 : con(F,+, D,6, P ) ∨ con(F,+, D,>, P )← inMenu(F,D),max price(P )

g3 : con(F,+, D,≡, P ) ∨ con(F,+, D, 6≡, P )← inMenu(F,D),max price(P )

c : ← not&check [con, sum]()

The rule r′i results from ri by replacing the constraint atom with its guess atom.
The rules g1, g2 and g3 guess the truth values of all (ground) constraint atoms,
and c checks compatibility of the guess via the constraint solver. Here sum is
like con a special predicate for sums in constraint expressions that is void. ut
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For more details and discussion, we refer to [54].

HEX∃ programs. An important feature of HEX programs is that they are
capable of value invention, i.e., that new constants are introduced into a pro-
gram. This relates to existential quantification, as, given an external atom
&p[~y](~x) that evaluates to true, the output values ~x witness that the formula

∃ ~X &p(~y, ~X) is true. If we are just interested in some (arbitrary) such witness
~x, we might write rules that choose one of them; alternatively, one may dele-
gate this choice to the external source, i.e., use a variant &p′ of &p such that
&p′[~y](~x) holds for a unique ~x. As the choice of ~x depends on the external
source, we obtain in this way domain-specific existential quantification. If, as
in pure logic, we want to leave concrete witnesses open, we can use a tuple
~x′ = x1 . . . , xm of fresh constants xi (or null values) as generic witness; this
amounts to Skolemization for the elimination of function symbols.

Such logical existential quantification is supported in the language of HEX∃

programs, which are finite sets of rules of the form

∃ ~X : p( ~Y ′, ~X)← conj[~Y ], (5)

where ~X and ~Y are disjoint sets of variables, ~Y ′ ⊆ ~Y , p( ~Y ′, ~X) is an ordinary

atom, and conj[~Y ] is a conjunction of (possibly default-negated) atoms and

external atoms containing all and only the variables ~Y . Semantically, this rule
assigns for each ground instance conj[~y] that evaluates to true a tuple ~x =
x1, . . . , xm of new null values as above.7

A HEX∃ program Π can be transformed to an equivalent HEX program
T (Π) by rewriting each rule r of form (5) to the rule

p( ~Y ′, ~X)← conj[~Y ],&exists |Ỹ
′|,|X̃ |[r, ~Y ′]( ~X),

where the existential quantifier is replaced by a new external atom &exists of
appropriate input and output arity which uses value invention.

Example 10. Consider the following HEX∃ program Π, which expresses that
each employee X has some office Y :

employee(john). employee(joe).
r1 : ∃X : office(Y,X) ← employee(Y ).
r2 : room(X) ← office(Y,X)

In the translated program T∃(Π), r1 is replaced by

r′1 : office(Y,X)← employee(Y ),&exists1 ,1 [r1, Y ](X).

One can use HEX∃ programs to model query answering from existential rules
(i.e., conj[~Y ] in (5) consists of ordinary atoms). Even if the answer set may be
infinite, a finite fragment may suffice for this purpose. For more details see [17].

7 By the underlying unique name assumption, these values do not match with any
other values; to model this, equality reasoning would need to be imposed on top.
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6 HEX as Backend Formalism

For the third use scenario, we consider some data and knowledge-based for-
malisms that use (extended) HEX programs as backend.

Multi-context systems. Multi-context systems (MCSs) [7] are a formalism
for interlinking multiple knowledge based systems called contexts. The formal-
ism abstracts from the knowledge representation language and models context
semantics in terms of accepted belief sets. The latter are abstractly modeled
as naked sets whose elements (i.e., the beliefs) need not bear logical structure.
The contexts are interlinked by so called bridge rules which add formulas to
the knowledge base of a context depending on the presence and/or absence of
beliefs from the belief sets of other contexts. The semantics of an MCS is given
in terms of equilibria, which are global states that consist of acceptable belief
sets for each context, such that all bridge rules are satisfied.

Besides computing equilibria, an important reasoning task for MCSs is in-
consistency analysis; e.g., given a MCS M that lacks equilibria, compute a
reason for this inconsistency [19]. Inconsistency explanations can be computed
using a HEX program encoding [6] in which external atoms outsource contextual
reasoning and check whether a context accepts a certain belief set. The use of
external atoms in the program is highly cyclic as the saturation technique is
employed; the latter is required as the problem is beyond NP and co-NP.

Description Logics plus rules. Description logics (DLs) provide a logical
formalism for ontologies that are well-suited for the Semantic Web [36] or in
medical applications [37]. Ontologies represent classes of objects, referred to as
concepts, and the relations between objects, called roles. Concepts and roles
correspond to unary and binary predicates in first-order logic, respectively.
A description logic knowledge base consists of a Tbox (the terminology) that
defines concepts and roles and represents relations between them, and an Abox
(assertions), that contains specific information on membership of individuals
in concepts resp. of pairs of individuals in roles.

Example 11. Suppose PhDStudent , Student and Professor are concepts and
isAssistantOf is a role. The Tbox may contain the concept inclusion axiom
PhDStudent v Student , which states that the class of PhD students is a sub-
class of all students. The Abox contains concept membership assertions like
Professor(smith) and PhDStudent(johnson), representing that smith is a pro-
fessor and johnson a PhD student. An assertion isAssistantOf (johnson, smith)
states that johnson is an assistant of professor smith. ut

Typical reasoning tasks over description logic knowledge bases include con-
cept and role retrieval, i.e., listing all individuals or pairs of individuals which
are members of a given concept or role, respectively. In the example above one
may ask for all members of Student and expects as answer johnson as he is a
PhDStudent and thus, by the terminological knowledge, also a Student .

Combining ontologies and answer set programming is especially valuable as
existing domain knowledge can be accessed from logic programs. To this end,
DL-programs have been developed by [21] which have been implemented on
top of HEX programs with dedicated external atoms; where the external source

17



features external atoms for concept and role queries. Prior to query evaluation,
concepts and/or roles are enriched by individuals from the ASP program. This
allows for advanced reasoning tasks such as terminological default reasoning or
closed world reasoning on description logic knowledge bases [11].

As description logics are monotonic, default reasoning can only be realized
by the (cyclic) interaction of rules and the DL knowledge base. To this end, ap-
propriate encodings and an implementation were developed [11]. DL-programs
have, e.g., been applied in complaint management for e-government [60].

The MELD belief merging system deals with merging collections of be-
lief sets [52, 53], which are roughly sets of classical ground literals. A merging
strategy is defined by tree-shaped merging plans, whose leaves are the collec-
tions of belief sets to be merged, and whose inner nodes are merging operators
(provided by the user). The structure is akin to syntax trees of terms. The
automatic evaluation of tree-shaped merging plans is based on nested HEX

programs; it proceeds bottom-up, where every step requires inspection of the
subresults, i.e., accessing the answer sets of subprograms. In fact, the need for
such processing has led to develop nested HEX program.

Interactive ASP. The Answer Set Application Programming (ASAP) frame-
work [57] allows for creating interactive applications based on ASP. In this
framework, incoming events (e.g., keyboard) are processed by ASP and the
application state is managed using fluents (as in planning). An ASAP program
is rewritten to a HEX program where each evaluation obtains fluent values and
event information via HEX external atoms. Answer sets determine future flu-
ent values by atoms fl=val@t , which intuitively means that fluent fl has value
val at time t. Programs can contain actions (atoms starting with ’@’) as in
ACTHEX, for example to display the user interface or to quit the program.

Example 12. The following ASAP-program displays a help text and the state
(on or off) of a switch. The user can change the state using cursor keys and
quit with the Q key.

#initial switch=off ← .

switch=off @next←&event ["key.special"]("Down").

switch=on@next←&event ["key.special"]("Up").

@exit(0)←&event ["key.normal"]("q").

@drawText(2, 2, "Up/Down: switch, Q: quit")← .

@drawText(5, 4, State)← switch=State@next .

Here the time next refers to the state after the currently processed event. ut

ASAP is a hybrid HEX use scenario: an ASAP-program is rewritten into a HEX

program, transforming fluent atoms into regular atoms and adding rules con-
taining external atoms. At the same time an ASAP program can use arbitrary
external atoms, e.g., for string processing. ASAP combines computation out-
sourcing (string processing) with information outsourcing (events and fluents)
and uses HEX as a clean interface to the real world.
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7 Discussion

In the previous sections, we have considered different types of use case scenarios
for formalisms from the HEX family. We now briefly discuss some advantages
and drawbacks of these types. However, we remain at the surface and the
considerations only serve as a general guideline to select the way for realizing
a concrete application using HEX. After that, we consider related work.

7.1 Comparison of the use case types

Unsurprisingly, using the HEX formalism directly provides maximal flexibility
to the user, as this allows one to formulate arbitrary rules and to access ar-
bitrary external sources from the rules, provided that the external predicates
are defined and implementations are provided as plugins. Depending on the
conceptual complexity of the application, this might come at the price of a
low user convenience due to the need for heavy-weight and repetitive syntax in
the problem encodings. Furthermore, the manual implementation of external
source access through a plugin requires some effort (as in general, if one aims
at coupling systems via interfaces), and depending on experience and techni-
cal skills may be time-consuming; besides development also proper testing and
validation of the plugin have to be considered.

In contrast to this, HEX program extensions as well as automated trans-
lations of frontends in other KR formalisms into HEX programs provide one
with the possibility to use specific language features for expressing particu-
lar aspects of a problem. This comes with the advantage of eliminating some
repetitive work, where the same rule patterns need not be written over and over
again, and in this way also helps to reduce errors that are made by spoiled copy
and paste. Furthermore, using designated language constructs gives the solver
as in ordinary ASP more insight into the user’s intention in writing a certain
part of the program, which may be exploited for performance enhancements;
guessing such intention respectively discovering program parts or rule patterns
that may amount to an intention is expensive in general. For a simple example,
the constraint c′ in (4) is equivalent to the rule

a← not&check [color , edge](),not a; (6)

where a is a fresh atom. The explicit form of c′ allows us to immediately
conclude that &check [color , edge]() must be true in every answer set; given
(6), further analysis of the program is needed.

On the other hand, the use of front end translations provides limited flex-
ibility and one is in general committed to a specific encoding. This can be
disadvantageous, if for some targeted application that encoding is not work-
ing well (e.g., for performance reasons), or some additional features or aspects
should be respected (e.g., some simple preference of alternatives). As a com-
promise, one can then resort to encodings that are automatically generated,
but then manually customized by the user; this has been advocated and used
e.g. in [21]. However, this approach requires a proper grasp and understanding
of the encoding produced by the translation, which may require considerable
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effort, the more if—as happens often in practice—optimizations are applied
to the code (sometimes without proper documentation, and based on implicit
assumptions).

7.2 Related Work

Despite the terminological similarity, customizable functions as supported by
Gringo and so called frozen atoms supported by Clasp (sometimes called ex-
ternal atoms) are different from external atoms as supported by HEX. Gringo
supports custom functions (implemented in the scripting languages Lua or
Python) which are evaluated during the program grounding and thus compiled
away prior to the solving step. They are intended to be used as customizable
built-in atoms, but no cyclic dependencies are possible. The frozen atoms of
Clasp are sometimes also called external atoms; they are protected from opti-
mization, and their truth values can be determined from code (e.g., in Python)
that controls the grounding and solving process, for example in advanced tech-
niques such as incremental solving. Using frozen atoms requires that the solver
and the truth values of atoms are controlled “from outside” using imperative
code. HEX inverts the roles of ASP and imperative code: the dlvhex solver
engine controls the ASP evaluation and evaluates external atom semantics “in-
side” the ASP evaluation on demand and whenever needed. That is, with HEX

external semantics is evaluated within evaluation of ASP semantics, while with
Clasp, ASP semantics is evaluated within imperative code that configures the
truth values of frozen atoms.

Besides Gringo and Clasp, there are extensions of ASP towards the in-
tegration of specific external sources. Examples are constraint ASP as an in-
tegration of ASP with constraint programming as realized e.g. in clingcon [50]
and ezcsp [2], or DL-programs as a native combination of ASP with ontolo-
gies [22]. In contrast, HEX allows for the integration of arbitrary external
sources through a general interface and their flexible combination; the other
use cases correspond to special cases thereof.

8 Conclusion

Arriving at the end, we give a brief summary and an outlook on future work.

8.1 Summary

HEX programs extend answer set programs with access to external sources
through an API-style interface, which has been fruitfully deployed to various
applications. In this paper, we briefly discussed how the formalism can be used
for problem solving in KR.

To this end, we first presented the general methodology as a strict gener-
alization of ASP. In particular, the prominent guess and check paradigm can
be seamlessly combined with external sources, both in the guessing and in the
checking part. Also other ASP techniques, such as saturation, can be used with
external sources. We then presented two typical types of external sources for
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computation outsourcing and for information outsourcing, respectively, and for
combinations thereof. We further distinguished three typical use case scenarios
of HEX programs, namely for encoding end user applications, as a basis for
language extensions, and as a backend for other KR formalisms. For each of
the scenarios, we have briefly presented existing applications.

8.2 Open Issues and Future Work

Ongoing work includes the extension of the interface for external sources. While
the current interface is convenient, it turns out that the integration of external
sources as black boxes inhibits efficient evaluation in many cases. Low-level
interfaces might be less convenient, but give the reasoner more insights into
the semantics and properties of external atoms, which might be exploited to
increase efficiency. This includes the possibility for evaluating external sources
under partial interpretations and retrieving partial answers. Such interfaces
are currently under development and will be an alternative to the existing ones
without replacing them.

Another issue concerns robustness of performance. Currently, in some cases
small changes in the encoding and in the run options of the solver influence
the efficiency considerably. While such effects are understandable to users who
know the algorithms underlying the systems well, inexperienced users may face
difficulties in crafting efficient encodings for their applications. The same issue
applies to ordinary ASP as well, and thus is not a genuine issue for HEX pro-
grams; indeed, [29] states that “crafting an [plain] ASP encoding that also leads
to the best possible system performance is yet not as obvious as it might seem.”
In general, the highly declarative nature of ASP and its intrinsic intractability
comes at a computational price, and handling different inputs smoothly re-
quires complex and sophisticated algorithms, where also the use of heuristics
is indispensable; the presence of external atoms adds to this difficulty.

This naturally leads to two directions for potential future work. On the
solver side, the problem might be mitigated, but may not be expected to be
eliminated, by more advanced optimization methods and heuristics, which au-
tomatically optimize the input program and determine optimal solver options
to process the current input program. On the modeling side, an interesting issue
are methodologies for deciding when it makes sense to outsource computation
for efficiency reasons, and methodologies for encoding problems with external
atoms to ensure the best possible efficiency.
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