Extending Answer Set Programs with
Interpreted Functions as First-class Citizens

Christoph Redl|

redl@kr.tuwien.ac.at

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

January 16, 2017

Redl C. (TU Vienna) HEX-Programs January 16, 2017 1/19

mailto:redl@kr.tuwien.ac.at

Outline

Motivation

Redl C. (TU Vienna) HEX-Programs

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.

Redl C. (TU Vienna) HEX-Programs

January 16, 2017

3/19

Motivation
Function Symbols in Answer Set Programs
m Function symbols are often uninterpreted and
are used for structuring information.

Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

Redl C. (TU Vienna) HEX-Programs January 16, 2017

3/19

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

m Existing approaches towards interpreted functions typically define functions
as part of the program.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3/19

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

m Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage <+ car(X), notloc(X) # garage

Redl C. (TU Vienna) HEX-Programs January 16, 2017 3/19

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

m Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage <+ car(X), notloc(X) # garage

m Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).

RedI C. (TU Vienna) HEX-Programs January 16, 2017 3/19

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

m Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage <+ car(X), notloc(X) # garage

m Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y) < &add[4,5](X), 8multiply[X, 3](Y)

RedI C. (TU Vienna) HEX-Programs January 16, 2017 3/19

Motivation

Function Symbols in Answer Set Programs

Function symbols are often uninterpreted and

are used for structuring information.

Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

Existing approaches towards interpreted functions typically define functions
as part of the program.

Example: loc(X) = garage < car(X),notloc(X) # garage

Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).

Example: result(Y) < &add[4,5](X), 8multiply[X, 3](Y)

But the functions are not first-class citizens

= this inhibits higher-order functions.

RedI C. (TU Vienna) HEX-Programs January 16, 2017 3/19

Motivation

Function Symbols in Answer Set Programs

m Function symbols are often uninterpreted and
are used for structuring information.
Example: multiply(add(4,5), 3) represents the expression (4 + 5) - 3, but
does not actually evaluate it.

m Existing approaches towards interpreted functions typically define functions
as part of the program.
Example: loc(X) = garage < car(X),notloc(X) # garage

m Externally defined semantics of function symbols are supported by only few
approaches (e.g. HEX-programs, VI-programs, Clingo5).
Example: result(Y) < &add[4,5](X), 8multiply[X, 3](Y)
But the functions are not first-class citizens
= this inhibits higher-order functions.

Goal: Using externally defined functions, but being able to access them as
objects, compose them to new functions and pass them to other functions.

RedI C. (TU Vienna) HEX-Programs January 16, 2017

3/19

Motivation
Main idea

m Represent interpreted functions themselves by terms in the program.
m This turns them into first-class citizens, i.e., accessible objects.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4/19

Motivation
Main idea

m Represent interpreted functions themselves by terms in the program.
m This turns them into first-class citizens, i.e., accessible objects.
m Since they are objects in the program, they can be passed to other functions.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4/19

Motivation
Main idea

m Represent interpreted functions themselves by terms in the program.

m This turns them into first-class citizens, i.e., accessible objects.

m Since they are objects in the program, they can be passed to other functions.
m At specific points, they can be applied to a list of parameters.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4/19

Motivation
Main idea

m Represent interpreted functions themselves by terms in the program.

m This turns them into first-class citizens, i.e., accessible objects.

m Since they are objects in the program, they can be passed to other functions.
m At specific points, they can be applied to a list of parameters.

m This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 4/19

Motivation
Main idea

m Represent interpreted functions themselves by terms in the program.

m This turns them into first-class citizens, i.e., accessible objects.

m Since they are objects in the program, they can be passed to other functions.
m At specific points, they can be applied to a list of parameters.

m This paves the way for new modeling techniques:
abstract usage of functions, import of functions from outside, design patterns,
higher-order techniques from functional programming.

Contribution

m Representation of functions as terms.

m Based on this representation, we present HEX'™U-programs.
m A translation of such programs to traditional HEX-programs.
m Applications.

RedI C. (TU Vienna) HEX-Programs January 16, 2017 4/19

Interpreted Functions as First-class Citzens

Interpreted Functions as First-class Citzens

Redl C. (TU Vienna) HEX-Programs

Representing Interpreted Functions by Terms

Basic functions

m Function symbols f € F are basic function associated with an arity ¢.

m We assume that each f € F has an associated (total) semantics function
semy(¥): C* — T defined for all ¢-ary vectors y € C* of constants
T ... set of all function terms constructible over F and C.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 6/19

Representing Interpreted Functions by Terms

Basic functions

m Function symbols f € F are basic function associated with an arity ¢.

m We assume that each f € F has an associated (total) semantics function
semy(¥): C* — T defined for all ¢-ary vectors y € C* of constants
T ... set of all function terms constructible over F and C.

Representing general (possibly composed) functions

m We let C contain constant symbols #i for all integers i > 1 (placeholders),
which are used to represent function parameters.

m We use 7 as function-representing (fr-)terms to turn interpreted functions
into accessible objects.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 6/19

Representing Interpreted Functions by Terms

Example

Assume that the basic functions multiply and add have the expected semantics.

Then the fr-term t;, = multiply(add(#1, #2), #3) represents in standard
mathematical notation the function 7, (p1, p2, p3) = (p1 + p2) - p3-

Redl C. (TU Vienna) HEX-Programs January 16, 2017 7/19

Representing Interpreted Functions by Terms

Example

Assume that the basic functions multiply and add have the expected semantics.

Then the fr-term t;, = multiply(add(#1, #2), #3) represents in standard
mathematical notation the function 7, (p1, p2, p3) = (p1 + p2) - p3-

Note
An frterm ¢t = f(t1,...,t,) withf € Fand #,...,7 € T does not represent the
application of f to 11, . . . , ty, but does itself represents a (composed) function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 7/19

Representing Interpreted Functions by Terms

Definition

For a list of ground terms ¢, py, ..., p,) we let val(t, p1, . . ., p,()) be given by
val(semy (1), p1, ..., pyn) ift=f(7) and 7' is free of #i,

f(@) if = f(7) and there is a #i in 7/,
Di if t = #i for some 1 <i < ~(1),
t otherwise,

where 7and 7 are (-ary vectors with #; = val(t;, p1, ..., pyp) forall 1 <i < 2.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 8/19

Representing Interpreted Functions by Terms

Definition

For a list of ground terms ¢, py, ..., p,) we let val(t, p1, . . ., p,()) be given by
val(semy (1), p1, ..., pyn) ift=f(7) and 7' is free of #i,

f(@) if = f(7) and there is a #i in 7/,
Pi if t = #i for some 1 <i < ~(1),
t otherwise,

where 7and 7 are (-ary vectors with #; = val(t;, p1, ..., pyp) forall 1 <i < 2.

Example
Consider t = multiply(add(?;?, fqé/é?),;;é?) and suppose to evaluate #(4, 5, 3).
—m,_/
w7 = val(#1,4,5,3) = 4, 1, = val(#2,4,5,3) = 5, &, = val(#3,4,5,3) = 3
Bt = val(add(#1,#2),1),t,,8,) = val(add(#1,#2),4,5,3) =9

m 7 = val(semmuipiy (1}, 1)) = val(semupuipiy (9, 3)) = 27

RedI C. (TU Vienna) HEX-Programs January 16, 2017 8/19

Interpreted Functions as First-class Citzens

Using FR-Terms in Programs

Definition
An interpreted function (ifu-)atom is of kind B

) R=gT[Py,..., Py,) .
where R € T is a comparison operand, T € 7 is an fr-term,and Py,..., Py € T
are parameters.

Red| C. (TU Vienna) HEX-Programs January 16, 2017 9/19

Using FR-Terms in Programs

Definition

An interpreted function (ifu-)atom is of kind B

) R=gT[Py,..., Py,) .
where R € T is a comparison operand, T € 7 is an fr-term,and Py,..., Py € T
are parameters.

Definition

A ground ifu-atom a of form r =g t[ty, . . ., #,,] is true wrt. assignment A, denoted
A = a, if n = ~(¢) and r has the value of val(t, 11, . . .,t,), and false, denoted
A F~ a, otherwise.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 9/19

Using FR-Terms in Programs

Definition

An interpreted function (ifu-)atom is of kind B

) R=gT[Py,..., Py,) .
where R € T is a comparison operand, T € T is an fr-term, and Py,..., P, € T
are parameters.

Definition
A ground ifu-atom a of form r =g t[ty, . . ., #,,] is true wrt. assignment A, denoted
A E a, if n = (¢) and r has the value of val(z, 1y, . .. , ,,), and false, denoted

A F~ a, otherwise.

Example

The fr-term add(#1, 1) represents the increment function.
The ifu-atom X =g add(#1, 1)[Y] applies it to the parameter Y and compares the
result with X.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 9/19

Using FR-Terms in Programs

Definition

An ASP- resp. HEX-program with interpreted functions (ASP'*resp. HEX'TV) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Red| C. (TU Vienna) HEX-Programs January 16, 2017 10/19

Using FR-Terms in Programs

Definition

An ASP- resp. HEX-program with interpreted functions (ASP'Uresp. HEX'™) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

m Consider

complnitials(concat(firstchar(#1), firstchar(#2))) <
m Consider facts of kind

person(F,L) <

represent persons with first name F and last name L.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 10/19

Using FR-Terms in Programs

Definition
An ASP- resp. HEX-program with interpreted functions (ASP'Uresp. HEX'™) is an
ASP- resp. HEX-program, where rule bodies may contain ifu-atoms.

Example

m Consider
complnitials(concat(firstchar(#1), firstchar(#2))) <
m Consider facts of kind
person(F,L) <
represent persons with first name F and last name L.
m Then
initials(F,L,I) < person(F,L), complnitials(C),I =g C[F, L]
computes the initials of all persons by applying the function.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 10/19

Outline

Excursus: HEX-Programs

Redl C. (TU Vienna) HEX-Programs

HEX-Programs

HEX-programs extend ordinary ASP programs by external sources
Definition (HEX-programs)

A HEX-program consists of rules of form
aiV---Va, < by,... ,by,notby,,...,not by,
with classical literals a;, and classical literals or an external atoms b;.

Definition (External Atoms)

An external atom is of the form

_ &lar, .., al, ..., 0),
p . ..external predicate name

qi - . . predicate names or constants HEX-

t ...terms program [~ - Reasoner
Semantics: 3

1 + k + l-ary Boolean oracle function f,: Implementation
&lq1,---,q)(t1, ..., 1) is true under assignment A of &p

ifff&p(Aaqla"'aqkytla“-atl) =1

RedI C. (TU Vienna) HEX-Programs January 16, 2017

12/19

Implementation of Interpreted Functions on Top of HEX-Programs

Implementation of Interpreted Functions on Top of HEX-Programs

Redl C. (TU Vienna) HEX-Programs

Evaluation of HEX'"Y-Programs

Evaluation is based on a translation to traditional HEX-programs.
Definition

For an assignment A and list of ground terms ¢, py, . .., p, s.t. ¥(¢) = n, let

Saevat(A,t,p1, ... ,pn,7) = 0 Where o = T if r = val(t,p1,...,p,) and o = F
otherwise.

Red| C. (TU Vienna) HEX-Programs January 16, 2017 14/19

Implementation of Interpreted Functions on Top of HEX-Programs

Evaluation of HEX'"Y-Programs

Evaluation is based on a translation to traditional HEX-programs.
Definition

For an assignment A and list of ground terms ¢, py, . .., p, s.t. ¥(¢) = n, let

Saevat(A,t,p1, ... ,pn,7) = 0 Where o = T if r = val(t,p1,...,p,) and o = F
otherwise.

Definition
The translation of an ifu-atom a of kind R =4 T[Py,...,P,] to an external atom is
given by 7(a) = &val[T, Py, ..., P(R).

For HEX'™-program II, we let 7(IT) be II after replacing each ifu-atom a by 7(a).

Redl C. (TU Vienna) HEX-Programs January 16, 2017 14/19

Evaluation of HEX'"Y-Programs

Evaluation is based on a translation to traditional HEX-programs.
Definition

For an assignment A and list of ground terms ¢, py, . .., p, s.t. ¥(¢) = n, let

Saevat(A,t,p1, ... ,pn,7) = 0 Where o = T if r = val(t,p1,...,p,) and o = F
otherwise.

Definition

The translation of an ifu-atom a of kind R =g T[Py, .. ., P¢] to an external atom is
given by 7(a) = &val[T, Py, ..., P(R).

For HEX'™-program II, we let 7(IT) be II after replacing each ifu-atom a by 7(a).
Proposition

An assignment A is an answer set of a HEX'™V-program 11 if and only if it is an
answer set of the HEX-program 7 (II).

Redl C. (TU Vienna) HEX-Programs January 16, 2017 14/19

Outline

Applications

Redl C. (TU Vienna) HEX-Programs

Applications of HEX'FY-Programs

Software design patterns

m Consider &etValidator[type](V) which returns for a given type of data
type € {phone, email, url, ...} a validator.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 16/19

Applications of HEX'FY-Programs

Software design patterns

m Consider &erValidator[type](V) which returns for a given type of data
type € {phone, email, url, ...} a validator.

m Data can be verified using:
r1 : validators(AttType, V) <+ emp(ld, AttType, AttValue),

&etValidator|AttType] (V).
1y invalid(Id) <« emp(Id, AttType, AttValue),
validators(AttType, V),0 =g V[AntValue].

Redl C. (TU Vienna) HEX-Programs January 16, 2017 16/19

Applications of HEX'FY-Programs

Integration of heterogeneous knowledge bases
Suppose lookup(#1) provides access to the central dictionary and is accessible
via predicate /.

Then data(A) < I(D), K =g D[employee],A =g K|query] can be used to answer
queries over the employee knowledge-base using the access function D.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 17/19

Applications of HEX'FY-Programs

Integration of heterogeneous knowledge bases

Suppose lookup(#1) provides access to the central dictionary and is accessible
via predicate /.

Then data(A) < I(D), K =g D[employee],A =g K|query] can be used to answer
queries over the employee knowledge-base using the access function D.

Traditional higher-order functions

Consider the external atom &nap|f, p](X) which applies function f, given as an
fr-term, to all elements in the extension of predicate p.

Then res(R) < complnitials(C), R =g &nap|C, person](X) can be used to compute
the initials of all persons in the extension of predicate person.

Redl C. (TU Vienna) HEX-Programs January 16, 2017 17/19

Outline

B Conclusion

Redl C. (TU Vienna) HEX-Programs

Conclusion

ASP Programs with Interpreted Functions

m Traditionally, functions are mostly
either uninterpreted or interpreted but defined within the program.

m Our approach uses externally defined functions.

m In contrast to few existing approaches towards such externally defined
functions, ours treats them as first-class citizens, i.e., accessible objects.

m This paves the way for higher-order functions.

Future Work

m Functions with predicate parameters.
m Additional means for defining functions such as currying.

Redl C. (TU Vienna) HEX-Programs January 16, 2017

19/19

	Motivation
	Interpreted Functions as First-class Citzens
	Excursus: HEX-Programs
	Implementation of Interpreted Functions on Top of HEX-Programs
	Applications
	Conclusion

