
FLP Answer Set Semantics without Circular

Justifications for General Logic Programs∗

Yi-Dong Shena, Kewen Wangb, Jun Denga, Christoph Redlc, Thomas
Krennwallnerc, Thomas Eiterc, Michael Finkc

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing 100190, China

bSchool of Computing and Information Technology, Griffith University, Brisbane QLD
4111,Australia

cInstitut für Informationssysteme, Technische Universität Wien, Favoritenstrasse 9-11,
A-1040 Vienna, Austria

Abstract

The answer set semantics presented by Faber et al. (2011) has been widely
used to define so called FLP answer sets for different types of logic programs.
However, it was recently observed that when being extended from normal to
more general classes of logic programs, this approach may produce answer
sets with circular justifications that are caused by self-supporting loops. The
main reason for this behavior is that the FLP answer set semantics is not
fully constructive by a bottom up construction of answer sets. In this paper,
we overcome this problem by enhancing the FLP answer set semantics with a
level mapping formalism such that every answer set I can be built by fixpoint
iteration of a one-step provability operator (more precisely, an extended van
Emden-Kowalski operator for the FLP reduct fΠI). This is inspired by the
fact that under the standard answer set semantics, each answer set I of a
normal logic program Π is obtainable by fixpoint iteration of the standard
van Emden-Kowalski one-step provability operator for the Gelfond-Lifschitz
reduct ΠI , which induces a level mapping. The enhanced FLP answer sets,

Email addresses: ydshen@ios.ac.cn (Yi-Dong Shen), k.wang@griffith.edu.au
(Kewen Wang), dengj@ios.ac.cn (Jun Deng), redl@kr.tuwien.ac.at (Christoph
Redl), tkren@kr.tuwien.ac.at (Thomas Krennwallner), eiter@kr.tuwien.ac.at
(Thomas Eiter), fink@kr.tuwien.ac.at (Michael Fink)

∗ This article contains revised and significantly extended work presented at IJCAI-
2011 (Shen, 2011) and AAAI-2012 (Shen and Wang, 2012).

Preprint submitted to Elsevier November 10, 2013

which we call well-justified FLP answer sets, are thanks to the level mapping
free of circular justifications. As a general framework, the well-justified FLP
answer set semantics applies to logic programs with first-order formulas, logic
programs with aggregates, description logic programs, hex-programs etc.,
provided that the rule satisfaction is properly extended to such general logic
programs. We study in depth the computational complexity of FLP and well-
justified FLP answer sets for general classes of logic programs. Our results
show that the level mapping does not increase the worst-case complexity
of FLP answer sets. Furthermore, we describe an implementation of the
well-justified FLP answer set semantics, and report about an experimental
evaluation, which indicates a potential for performance improvements by the
level mapping in practice.

Keywords: Answer set programming, knowledge representation, nonmono-
tonic reasoning.

1. Introduction

Answer set programming (ASP) is a major logic programming paradigm
rooted in knowledge representation and reasoning (Marek and Truszczyński,
1999; Niemela, 1999; Lifschitz, 2002). It is an emerging approach to modeling
and solving search and optimization problems arising in many application
areas of AI including planning, reasoning about actions, diagnosis, abduction,
and beyond (Baral, 2003; Brewka et al., 2011b). In ASP, the semantics of a
logic program is given by a set of intended models, called stable models or
answer sets (Gelfond and Lifschitz, 1988, 1991). In fact, answer sets can be
equivalently defined in many different ways (which indicates intrinsic richness
of the concept); Lifschitz (2010) listed 13 of them, and yet more exist.

In this paper, we focus on one of the equivalent definitions of answer sets,
called FLP answer sets (Faber et al., 2004, 2011), which is widely used. Like
the seminal definition by Gelfond and Lifschitz (1988), it uses a program
reduct, but in contrast it does not modify the rules of a logic program.
Informally, given an interpretation I of a logic program Π, its FLP reduct
w.r.t. I, denoted fΠI , consists of all ground instances of rules in Π whose
bodies are satisfied by I; in analogy to Gelfond and Lifschitz (1988), I is
then an FLP answer set of Π if I is a minimal model of fΠI .

This definition has been motivated by giving an answer set semantics
to logic programs with aggregates, and due to its simplicity and attractive

2

properties (minimality of models is guaranteed), it can be easily deployed to
other extensions of logic programs, provided that rule satisfaction is properly
defined. This has been exploited for a variety of logic programs, including
logic programs with aggregates or abstract constraint atoms (c-atoms) (Faber
et al., 2004, 2011), description logic programs (dl-programs) (Eiter et al.,
2005, 2008), hex-programs (Eiter et al., 2005), tightly coupled dl-programs
(Lukasiewicz, 2010), modular logic programs (Dao-Tran et al., 2009), and
logic programs with first-order formulas (Bartholomew et al., 2011). For
convenience, we refer to all such extensions of normal logic programs in the
unifying framework of the FLP answer set semantics as general logic pro-
grams.

However, it was recently observed that for general logic programs, the
FLP answer set semantics may produce answer sets with circular justifica-
tions that are caused by self-supporting loops (Shen and You, 2009; Liu et al.,
2010). The following two examples well illustrate this behavior.

Example 1. Consider the following logic program with aggregates:

Π1 : p(1). r1

p(2)← p(−1). r2

p(−1)← SUM〈X : p(X)〉 ≥ 1. r3

For any interpretation I of Π1, the aggregate function SUM〈X : p(X)〉 yields
the sum S of all X ∈ {−1, 1, 2} such that p(X) is true in I. The aggregate
SUM〈X : p(X)〉 ≥ 1 is satisfied by I if S ≥ 1. Let I = {p(1), p(−1), p(2)}.
Since p(X) is true in I for each X ∈ {−1, 1, 2}, the aggregate SUM〈X :
p(X)〉 ≥ 1 is satisfied by I. The FLP reduct of Π1 w.r.t. I is Π1 itself; i.e.,
fΠI

1 = Π1. It is easy to check that I is a minimal model of fΠI
1, so I is an

answer set of Π1 under the FLP answer set semantics (Faber et al., 2011).
Observe that this FLP answer set has a circular justification caused by the
following self-supporting loop:

p(2)⇐ p(−1)⇐ SUM〈X : p(X)〉 ≥ 1⇐ p(2).

That is, p(2) being in I is due to p(−1) being in I (via r2), while p(−1)
being in I is due to I satisfying the aggregate SUM〈X : p(X)〉 ≥ 1 (via r3).
Since the domain of X in the aggregate function is {−1, 1, 2}, I satisfying
SUM〈X : p(X)〉 ≥ 1 is due to p(2) being in I (i.e., without p(2), I would not
satisfy this aggregate). As a result, p(2) is circularly supported (justified) in
I by itself.

3

Example 2. Consider the following logic program with classical logic for-
mulas:2

Π2 : p(2)← p(2) ∧ (¬p(−1) ∨ p(1)). r1

p(−1)← ¬p(−1) ∨ p(1) ∨ p(2). r2

p(1)← p(−1). r3

Note that the body and head of each rule in Π2 are classical logic formulas.
Consider the interpretation I = {p(−1), p(1)}. Since the body of rule r1 is
not satisfied by I, the FLP reduct of Π2 w.r.t. I is fΠI

2 = {r2, r3}. I is a
minimal model of fΠI

2 and thus is an answer set of Π2 under the FLP answer
set semantics (Bartholomew et al., 2011). Observe that this FLP answer set
has a circular justification caused by the following self-supporting loop:

p(1)⇐ p(−1)⇐ ¬p(−1) ∨ p(1) ∨ p(2)⇐ p(1).

That is, p(1) being in I is due to p(−1) being in I (via r3), which in turn
is due to I satisfying ¬p(−1) ∨ p(1) ∨ p(2) (via r2). Since both ¬p(−1) and
p(2) are false in I, I satisfying ¬p(−1) ∨ p(1) ∨ p(2) is due to p(1) being in
I. Therefore, p(1) is circularly justified in I by itself.

Our careful study reveals that the fundamental reason behind the circular
justification problem for general logic programs is that FLP answer sets can
not always be constructed in a bottom up fashion by iterated applications
of rules; that is, they might lack a level mapping such that atoms in an
answer set at upper levels are derived from atoms at lower levels by iterated
applications of rules. We would like to stress that it is such a level mapping
on answer sets that makes each if-then rule H ← B in a logic program
essentially different from an implication B ⊃ H in classical logic. In fact,
for normal logic programs Fages (1994) showed that the standard answer set
semantics of Gelfond and Lifschitz (1988) has a level mapping on its answer
sets. Since the FLP answer set semantics agrees with the standard answer set

2Logic programs with classical logic formulas were recently introduced by Bartholomew
et al. (2011), which consist of rules of the form H ← B, where H and B are arbitrary first-
order formulas. Normal logic programs can be viewed as a special form of logic programs
with first-order formulas, where the negation not is identified with ¬, each rule head H
with an atom, and each rule body B with a conjunction of literals. Answer sets of such
logic programs are defined by the FLP answer set semantics.

4

semantics for normal logic programs, answer sets of normal logic programs
under the FLP answer set semantics are free of circular justifications.

In this paper, we remedy the circular justification problem of FLP answer
sets for general logic programs by enhancing them with a level mapping
formalism. Observe that for a normal logic program Π, each standard answer
set I is obtained by fixpoint iteration of the van Emden and Kowalski (1976)
one-step provability operator for the well-known Gelfond and Lifschitz (1988)
reduct ΠI ; this process naturally induces a level mapping on I. Inspired
by this, we define for a general logic program Π answer sets I by fixpoint
iteration in a similar way such that a level mapping on I is induced. We
first extend the van Emden-Kowalski operator from positive to general logic
programs, and then adapt the fixpoint construction of the standard answer
set semantics from normal to general logic programs. To this end, we replace
the Gelfond-Lifschitz reduct ΠI with the FLP reduct fΠI and iterate the
extended van Emden-Kowalski operator on fΠI to obtain its least fixpoint;
I is then an answer set if it coincides with this fixpoint.

We show that such defined answer sets are in fact FLP answer sets which,
due to the naturally induced level mapping, are free of circular justifications.
For this reason, we call such answer sets well-justified FLP answer sets and
the according semantics the well-justified FLP answer set semantics.

The main contributions of this paper are summarized as follows:

(1) We define the well-justified FLP answer set semantics for logic pro-
grams with first-order formulas. To the best of our knowledge, this is the first
answer set semantics that is free of circular justifications for logic programs
of this kind. We further extend the well-justified FLP answer set semantics
to logic programs with aggregates or c-atoms, i.e. logic programs with rules
of the form H ← B, where H and B are first-order formulas extended with
aggregate atoms or c-atoms. This is also the first answer set semantics that
is free of circular justifications for such general logic programs. For logic
programs whose rule heads are atoms, in (Denecker et al., 2001; Pelov et al.,
2007) a three-valued fixpoint semantics was introduced, which defines answer
sets (called two-valued stable models) that are free of circular justifications.
We show that for this class of logic programs two-valued stable models are
well-justified FLP answer sets, but the converse is not true. For normal pro-
grams with aggregates or c-atoms, in (Son et al., 2007; Son and Pontelli,
2007) a conditional satisfaction based answer set semantics was presented
that agrees with the three-valued fixpoint semantics. We show that for this

5

particular class of logic programs, the well-justified FLP answer set seman-
tics agrees with the conditional satisfaction based semantics and thus agrees
with the three-valued fixpoint semantics.

(2) We apply the well-justified FLP answer set semantics to dl-programs,
which were introduced in (Eiter et al., 2008) as a framework for combining
answer set programming with description logics (DLs) (Baader et al., 2010)
for the Semantic Web. A dl-program can be viewed as a normal logic pro-
gram enhanced with an interface to query an external DL knowledge base.
Weak, strong and FLP answer sets are three increasingly restrictive notions
of answer sets for dl-programs in (Eiter et al., 2005, 2008) that incorporate
increasing levels of foundedness. As weak answer sets may be unfounded due
to circular justifications by self-supporting positive loops, Eiter et al. (2008)
introduced strong answer sets which eliminate such unfoundedness. However,
strong answer sets might not be minimal models in general, which motivated
Eiter et al. to consider FLP answer sets (Eiter et al., 2005). However, both
strong and FLP answer sets admit circular justifications in general, which
might be undesired. We therefore introduce well-justified FLP answer sets
for dl-programs; this is the first notion of answer sets for dl-programs that
are free of circular justifications.

(3) We study in depth the computational complexity of the ordinary FLP
and the well-justified FLP answer set semantics on the problems of answer
set existence, cautious reasoning and brave reasoning. Since first-order logic
is undecidable, it is clearly undecidable whether an arbitrary general logic
program has an ordinary resp. a well-justified FLP answer set, even in ab-
sence of function symbols. We focus here on propositional logic programs
and consider aggregates that are computable in polynomial time. For dl-
programs, we consider three expressive DLs: SHIF(D), SHOIN (D) and
SROIQ(D), which are the logical underpinnings of the Web ontology lan-
guages OWL Lite, OWL DL (Horrocks et al., 2003) and OWL 2 (Horrocks
et al., 2006; Grau et al., 2008), respectively. Our results show that the level
mapping of well-justified FLP answer sets does not increase the worst-case
complexity.

(4) We describe an implementation of the well-justified FLP answer set
semantics and report about an experimental evaluation which compares the
ordinary and the well-justified FLP answer set semantics on a benchmark
suite. The results indicate an interesting potential of the well-justified FLP-
answer set semantics for performance improvements in practice. Indeed, in

6

a number of cases well-justified FLP answer sets are computed faster than
ordinary FLP answer sets; in some cases, few well-justified FLP answer sets
exist while in others they coincide with all FLP answer sets. Intuitively, this
is connected to the number of iterations in the deterministic fixpoint con-
struction of well-justified FLP answer sets, compared to the non-constructive
minimality check for ordinary FLP answer sets. This suggests to search for
well-justified FLP answer sets first, and then fall back to ordinary FLP an-
swer sets if no well-justified ones have been found.

As a general framework, the well-justified FLP answer set semantics can
be easily deployed to other kinds of logic programs, such as hex-programs,
tightly coupled dl-programs, modular logic programs, etc., provided that the
satisfaction relation is extended to these general logic programs.

Structure. The rest of this paper is organized as follows. In Section 2, we in-
troduce logic programs with first-order formulas and define the ordinary FLP
answer set semantics for them. In Section 3, we introduce the well-justified
FLP answer set semantics for such logic programs, while in Sections 4 and
5, we extend the well-justified FLP answer set semantics to logic programs
with aggregates and to dl-programs, respectively. In Section 6, we study the
computational complexity of the ordinary and the well-justified FLP answer
set semantics. We describe in Section 7 our implementation and present an
experimental evaluation. In Section 8, we review related work, while in Sec-
tion 9 we give a summary and present issues for future work. For clarity and
in order not to distract from reading, proofs of the results have been moved
to the appendix.

2. A First-Order Logic Language

In this section, we first recall concepts and fix notation for first-order logic
under the standard names assumptions, and then introduce logic programs
with first-order formulas and their FLP answer set semantics.

2.1. First-Order Logic

We denote by LΣ the first-order logic language with equality over sig-
nature Σ = (P ,F), where P ,F are countable sets of predicate and function
symbols of arities ≥ 0, respectively; C ⊆ F denotes the set of 0-ary function
symbols, which are called constants. Given a countable set V of variables,
terms and atoms are defined as usual, and formulas are constructed from

7

atoms with connectives ¬, ∧, ∨, ⊃, ≡ and quantifiers ∃ and ∀. Literals are
atoms A or their negation ¬A.

A term, atom or formula is ground if no variable occurs in it; we denote by
NΣ and HΣ the sets of all ground terms and ground atoms of Σ, respectively.
A formula is closed if it has no free variables (i.e., all variables are in the
scope of a quantifier). A (first-order) theory is a set of closed formulas.

An interpretation of LΣ is a pair I = 〈U, .I〉, where U is a domain, and .I

is a mapping which assigns to each n-ary predicate symbol p ∈ P a relation
pI ⊆ Un, and each m-ary function symbol f ∈ F a function f I : Um → U . A
variable assignment B for I is a mapping which assigns an element XB ∈ U
to each variable X ∈ V . The interpretation of a term t, denoted tI,B, is
defined as usual, where B is omitted when t is ground. Satisfaction of a
formula F in I relative to B is defined as usual; I is a model of F if I satisfies
F for every variable assignment B, and is a model of (or satisfies) a theory O
if I is a model of every formula in O. A theory is satisfiable (or consistent) if
it has some model. The entailment relation is defined in terms of satisfaction
as usual; i.e., a theory O entails a formula F , or F is true in O, denoted
O |= F , if every model of O is a model of F .

2.1.1. Standard Names Assumption (SNA)

In order to access in I = 〈U, .I〉 all elements of the domain U by name,
we employ the standard names assumption, cf. (Motik and Rosati, 2010;
de Bruijn et al., 2008), i.e., (1) Σ includes a countably infinite set of constants
and the binary equality predicate symbol ≈, (2) U = NΣ and tI = t for each
t ∈ NΣ, and (3)≈I is a congruence relation over U , i.e., a reflexive, symmetric
and transitive relation that allows replacement of equals by equals.

In such interpretations I, which are called SNA interpretations, every
variable assignment over the domain U amounts to a substitution of variables
over NΣ. Moreover, since pI ⊆ N n

Σ for each n-ary predicate symbol p ∈ P ,
the SNA interpretations of LΣ are in 1-1 correspondence with the subsets
of HΣ. We thus view each SNA interpretation I as a subset of HΣ, such
that I satisfies a ground atom A if A ∈ I, and satisfies ¬A if A 6∈ I.

It is well-known that SNA interpretations preserve satisfiability, i.e., a
first-order formula is satisfiable if and only if it is satisfiable in a model
employing the standard name assumption, cf. Fitting (1996). In the sequel,
we consider only SNA interpretations I ⊆ HΣ; for convenience, we let I− =
HΣ \ I and ¬I− = {¬A | A ∈ I−} and refer with “function symbols” tacitly
to function symbols of positive arity (m > 0).

8

2.2. Logic Programs with First-Order Formulas

We extend the language LΣ with rules of the form H ← B, where H
and B are first order formulas. Such a rule r expresses an if-then statement,
saying that if the logic property B holds, then infer H. We then define:

Definition 1. A logic program with first-order formulas (briefly, logic pro-
gram) is a finite set of rules. It is a normal logic program if each rule is of
the form

A0 ← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An, (1)

where each Ai is an atom without equality and function symbols, and a
positive logic program if moreover m = n.

For a rule r of the form H ← B, we use body(r) to refer to B, which may
be empty (in that case, we omit ←), and head(r) to refer to H; if r is of the
form (1), we use pos(r) and neg(r) to denote the conjunctions A1 ∧ · · · ∧Am
and ¬Am+1 ∧ · · · ∧ ¬An of positive and negative literals, respectively.

Note that rules in Π may have free variables. In ASP, these free variables
will be instantiated over an application specific domain CΠ which is a non-
empty, finite subset of C and includes all constants occurring in Π. A closed
instance of a rule r over CΠ is obtained by replacing every free variable in
r with some constant in CΠ. The grounding of a rule w.r.t. CΠ is the set
ground(r, CΠ) of all closed instances of r over CΠ, and the grounding of Π is
ground(Π, CΠ) =

⋃
r∈Π ground(r, CΠ); note that ground(Π, CΠ) is finite.

With no loss in generality, we assume the domain CΠ consists of all
constants in Π (in case that some constant a of the domain does not ap-
pear in Π, we may have it by adding to Π a dummy rule p(a) ← p(a)).
Then CΠ is unique, and for convenience we omit it from ground(r, CΠ) and
ground(Π, CΠ).

Remark: In a logic program Π, each rule H ← B with the set S of free vari-
ables may also be viewed as a globally universally quantified rule ∀S(H ← B),
where the domain of each variable in S is CΠ while the domain of the other
(locally quantified) variables is NΣ. Only globally universally quantified vari-
ables will be instantiated over their domain CΠ for the grounding ground(Π).

An interpretation I satisfies a closed rule instance r if it either satisfies
head(r) or it does not satisfy body(r); I is a model of Π if I satisfies every r ∈
ground(Π). Moreover, I is minimal if there exists no model J ⊂ I of Π.

9

Thus semantically, we may view a logic program Π as shorthand for
ground(Π), where each free variable in Π is viewed as shorthand for con-
stants in CΠ and each rule r ∈ Π is viewed as shorthand for ground(r).

A propositional theory/formula is a special first-order theory/formula that
contains no variables and no function symbols. A propositional logic program
is a logic program whose rule heads and bodies are propositional formulas.
A normal logic program Π can be viewed as a special propositional logic
program by grounding, i.e., ground(Π) is a propositional logic program.

The Herbrand base of a propositional logic program Π w.r.t. the domain
CΠ, denoted HBΠ, is the set of ground atoms p(a1, . . . , an), where p occurs
in Π and each ai is in CΠ. Any I ⊆ HBΠ is a Herbrand interpretation of Π.
Herbrand models are defined as usual, where the equality ≈ is interpreted
as identity under the unique name assumption (UNA); i.e., for all distinct
ai, aj ∈ CΠ we assume UNA axioms ¬(ai ≈ aj) to be implicitly present in
Π. For a Herbrand interpretation I, we denote I− for HBΠ \ I and ¬I− for
{¬A | A ∈ I−}.

We now define the ordinary FLP answer set semantics (briefly, the FLP
answer set semantics) for logic programs as follows.

Definition 2. Let Π be a logic program and I an interpretation. The FLP-
reduct of Π w.r.t. I is fΠI = {r ∈ ground(Π) | I satisfies body(r)}, and I is
an FLP answer set of Π if I is a minimal model of fΠI .

Example 3. Consider the logic program Π2 in Example 2. By Definition
2, the interpretation I = {p(−1), p(1)} is an FLP answer set of Π2, where
ground(Π2) = Π2 and fΠI

2 = {r2, r3}.

3. Well-Justified FLP Answer Sets for Logic Programs with First-
Order Formulas

As mentioned in the introduction, if-then rules H ← B in a logic program
essentially differ from material implications B ⊃ H in classical logic because
rules induce a level mapping on each answer set such that answers at upper
levels are derived from answers at lower levels by applying the rules in the
way that if the body of a rule is true in answers at lower levels then infer its
head. A typical example is that ¬A ⊃ A is equivalent to A in classical logic,
but A ← ¬A is completely different from A in logic programs since we can
never infer A from ¬A by applying the rule A← ¬A.

10

For logic programs whose rule heads are atoms, this notion of level map-
pings can be formalized as follows. We first define partitions of an interpre-
tation.

Definition 3. A partition of an interpretation I is of the form 〈S0, S1, · · · , Sm〉,
where S0 = ¬I−,

⋃
1≤i≤m Si = I, for each i > 0 Si 6= ∅, and for any i 6= j

Si ∩ Sj = ∅.

Note that ¬I− is included in partitions of I since it is the negative half
of I. We then define level mappings over such partitions.

Definition 4. Let Π be a logic program whose rule heads are atoms, I an
interpretation of Π, and S = 〈S0, S1, · · · , Sm〉 a partition of I. S is a level
mapping of I if for each A ∈ I with A ∈ Sk (k > 0), there is a rule r ∈
ground(Π) such that head(r) = A and body(r) is true in

⋃
0≤i≤k−1 Si (i.e.,⋃

0≤i≤k−1 Si |= body(r)).

For a level mapping 〈S0, S1, · · · , Sm〉, atoms in Si are said to be at a
higher (resp. lower) level than atoms in Sj if i > j (resp. i < j). When
an interpretation I has such a level mapping, every A ∈ I with A ∈ Sk is
supported by the body of a rule r, where head(r) = A and body(r) is true in⋃

0≤i≤k−1 Si. Since all atoms in
⋃

0≤i≤k−1 Si are at lower levels than A, A is
non-circularly justified. Thus, I has no circular justifications.

For instance, let Π = {A ← ¬C, B ← A ∧ ¬C} and I = {A,B}, where
A,B,C are ground atoms. Then, ¬C is in ¬I−. I has a level mapping
〈¬I−, {A}, {B}〉. Note that B is justified (via the second rule) by A and ¬C
at lower levels, while A is justified (via the first rule) by ¬C ∈ ¬I−. These
justifications are clearly non-circular.

When I has no level mapping, for any one of its partitions 〈S0, S1, · · · , Sm〉,
there must be some A ∈ I with A ∈ Sk for which we cannot find a rule r ∈
ground(Π) to non-circularly support A under the partition (i.e., head(r) = A
and body(r) is true in

⋃
0≤i≤k−1 Si). For instance, consider Π = {A ← ¬A}

and I = {A}. I has no level mapping. The only partition of I is 〈¬I−, {A}〉
and Π has no rule to non-circularly support A under the partition.

It turns out that the FLP answer set semantics from Definition 2 does
not induce such a level mapping for its answer sets. For an interpretation I
to be an answer set of a logic program Π, the FLP answer set semantics only
requires I to be a minimal model of the FLP reduct fΠI . This amounts to

11

treating all rules H ← B in fΠI as material implications B ⊃ H in classical
logic, because I is a model of the rules H ← B in fΠI if and only if I is a
model of the corresponding implications B ⊃ H in classical logic. As classical
logic does not induce level mappings for its models, an FLP answer set (i.e.,
a minimal model of fΠI) may not have a level mapping.

Example 4. Consider Π2 in Example 2. Let I = {p(−1), p(1)} be an in-
terpretation; then ¬p(2) is in ¬I−. I is an FLP answer set of Π2 since it is
a minimal model of the FLP reduct fΠI

2 = {r2, r3}, where r2 = p(−1) ←
¬p(−1)∨ p(1)∨ p(2) and r3 = p(1)← p(−1). I has in total three partitions:
〈¬I−, {p(−1)}, {p(1)}〉, 〈¬I−, {p(1)}, {p(−1)}〉 and 〈¬I−, {p(−1), p(1)}〉. It
turns out that none of these partitions is a level mapping. Therefore, the
FLP answer set I has no level mapping.

A way to overcome the circular justification problem of FLP answer sets
is thus to enhance the FLP answer set semantics with level mappings for the
FLP reduct, treating the reduct as a set of rules instead of a set of classical
implications. To this end, let us first review how the standard answer set
semantics induces a level mapping for answer sets of a normal logic program.

The seminal definition of an answer set I of a normal logic program Π
involves three steps (Gelfond and Lifschitz, 1988):

1. Eliminate all rules from ground(Π) whose bodies contain a negative
literal that is not satisfied by I.

2. Eliminate from the bodies of the remaining rules in ground(Π) all neg-
ative literals. Note that these negative literals are satisfied by I and
thus belong to ¬I−.

The rule set resulting from the two steps is called the Gelfond-Lifschitz
reduct of Π w.r.t. I and is denoted by ΠI ; note that ΠI is a positive
logic program.

3. Check whether I is the least model of ΠI . To this end, compute the
latter as the least fixpoint lfp(TΠI (∅)) of the operator TΠI by iteration
via the sequence 〈T iΠI (∅)〉∞i=0, where T 0

ΠI (∅) = ∅ and for i ≥ 0, T i+1
ΠI (∅) =

TΠI (T iΠI (∅)). Here TP (S), where P is a positive logic program and S is
a set of ground atoms, is the van Emden-Kowalski one-step provability
operator (van Emden and Kowalski, 1976) defined by

TP (S) = {head(r) | r ∈ ground(P) and body(r) is satisfied by S}.

12

Summarizing, I is an answer set of Π if I = lfp(TΠI (∅)).
This process naturally induces a level mapping on each answer set I,

which assigns a level k > 0 to each A ∈ I if A ∈ T kΠI (∅) but A 6∈ T k−1
ΠI (∅).

Let S = 〈S0, S1, · · · , Sm〉 be a partition of I, where S0 = ¬I−, for i > 0
Si = T iΠI (∅) \ T i−1

ΠI (∅), and
⋃

1≤i≤m Si = lfp(TΠI (∅)) = I. Note that for any

k > 0,
⋃

1≤i≤k Si = T kΠI (∅). Then, for every A ∈ I at level k > 0, there
exists some rule r ∈ ground(Π) such that head(r) = A, all negative literals
in body(r) are in ¬I− and all positive literals in body(r) are in T k−1

ΠI (∅). This
means body(r) is true in

⋃
0≤i≤k−1 Si. By Definition 4, S is a level mapping

of I. This shows that the standard answer set semantics is free of circular
justifications.

For logic programs with first-order formulas, the above three step defini-
tion of answer sets is not applicable in general, since rule heads and bodies
of such general logic programs can be arbitrary first-order formulas. For ex-
ample, let Π = {A ← A ∨ ¬A}, where A is a ground atom. Since the rule
body A ∨ ¬A is a tautology, I = {A} is supposed to be an answer set of Π.
Apparently, this answer set cannot be obtained following literally the three
steps above.

In order to handle arbitrary first-order formulas in rule heads and bodies
of a general logic program, we propose to extend the first two steps of the
Gelfond-Lifschitz definition of answer sets as follows:

1. Instead of eliminating all rules whose bodies contain some negative
literal that is not satisfied by I, we extend the first step by eliminating
from ground(Π) all rules whose bodies are not satisfied by I. This
yields the FLP reduct fΠI .

2. Instead of directly eliminating from fΠI all negative literals that appear
in ¬I−, we adapt the second step to first-order formulas by adding the
negative literals in ¬I− as constraints on fΠI .

To extend the third step of the Gelfond-Lifschitz definition to first-order
formulas, we first extend the van Emden-Kowalski operator TP (S), which is
applicable only to a positive logic program P parameterized with a set S of
ground atoms, to a new operator TΠ(O,N) that is applicable to a general logic
program Π parameterized with two first-order theories O and N . As shall
be seen below, the first parameter O of the extended operator TΠ(O,N) is
used to express a set of rule heads in ground(Π), while the second parameter
N used to express some constrains. Intuitively, by applying TΠ(O,N) we

13

infer all heads of rules from ground(Π) whose bodies are true in O under the
constraints N , i.e., O ∪N |= body(r). Formally, we have

Definition 5. Let Π be a logic program, and O and N be two first-order
theories. Define the following one-step provability operator:

TΠ(O,N) = {head(r) | r ∈ ground(Π) and O ∪N |= body(r)}.

When the constraints N are fixed, the entailment relation |= is mono-
tone in O, so TΠ(O,N) is monotone w.r.t. O. That is, for any first-order
theories O1, O2 with O1 ⊆ O2, TΠ(O1, N) ⊆ TΠ(O2, N). Therefore, the
sequence 〈T iΠ(∅, N)〉∞i=0, where T 0

Π(∅, N) = ∅ and for i ≥ 0 T i+1
Π (∅, N) =

TΠ(T iΠ(∅, N), N), will converge to a least fixpoint, denoted lfp(TΠ(∅, N)).
Thus, when replacing the constraints N with ¬I−, we obtain a fixpoint

lfp(TΠ(∅,¬I−)); and when further replacing Π with the FLP reduct fΠI , we
obtain a fixpoint lfp(TfΠI (∅,¬I−)).

With the new operator TΠ(O,N), we then extend the third step of the
Gelfond-Lifschitz definition of answer sets to first-order formulas as follows:

3. Compute the least fixpoint lfp(TfΠI (∅,¬I−)) of the operator TfΠI via
the sequence 〈T ifΠI (∅,¬I−)〉∞i=0, where T 0

fΠI (∅,¬I−) = ∅ and for i ≥ 0,

T i+1
fΠI (∅,¬I−) = TfΠI (T ifΠI (∅,¬I−),¬I−).

The following example illustrates the above extension to the Gelfond-
Lifschitz three step definition.

Example 5. Consider the following logic program, where A,B,C,D are
ground atoms:

Π : A ∨ (¬B ∧ C)← ¬A ∧ (¬C ∨ C). r1

D ← C. r2

Let I = {C,D} be an interpretation of Π; then ¬A,¬B are in ¬I−. Since I
satisfies the bodies of the two rules, the FLP reduct fΠI of Π w.r.t. I is Π
itself. Let T 0

fΠI (∅,¬I−) = ∅. Since the body of r1 is entailed by T 0
fΠI (∅,¬I−)∪

¬I−, T 1
fΠI (∅,¬I−) = {A ∨ (¬B ∧ C)}. Since the bodies of r1 and r2 are

entailed by T 1
fΠI (∅,¬I−) ∪ ¬I−, T 2

fΠI (∅,¬I−) = {A ∨ (¬B ∧ C), D}. It is

easy to check that T 3
fΠI (∅,¬I−) = T 2

fΠI (∅,¬I−); thus we have the fixpoint

lfp(TfΠI (∅,¬I−)) = {A ∨ (¬B ∧ C), D}.

14

The first important result about the extended van Emden-Kowalski op-
erator TΠ(O,N) is that when I is a model of a logic program Π, applying the
operator to Π and fΠI derives the same rule heads. This justifies the above
first step extension to the Gelfond-Lifschitz answer set definition, where the
FLP reduct fΠI is used as a simplified form of Π.

Theorem 1. Let I be a model of a logic program Π. For every i ≥ 0,
T iΠ(∅,¬I−) = T ifΠI (∅,¬I−) and thus lfp(TΠ(∅,¬I−)) = lfp(TfΠI (∅,¬I−)).

The proof of this theorem is based on the following lemma.

Lemma 1. If I is a model of a logic program Π, then for every i ≥ 0, I is
a model of T iΠ(∅,¬I−).

The next result shows that TΠ(O,N) is a proper generalization of the
original van Emden-Kowalski operator TP (S).

Theorem 2. Let I be a model of a normal logic program Π and ΠI be the
Gelfond-Lifschitz reduct of Π. Then for every i ≥ 0, T iΠI (∅) = T iΠ(∅,¬I−),
and thus lfp(TΠI (∅)) = lfp(TΠ(∅,¬I−)).

The following characterization of the standard answer set semantics fol-
lows immediately from Theorems 1 and 2.

Corollary 1. A model I of a normal logic program Π is an answer set under
the standard answer set semantics if and only if I = lfp(TΠI (∅)) if and only
if I = lfp(TΠ(∅,¬I−)) if and only if I = lfp(TfΠI (∅,¬I−)).

The conditions listed in Corollary 1 for an answer set of a normal logic
program do not apply to a logic program with first-order formulas, because
in the latter case the fixpoint lfp(TfΠI (∅,¬I−)) (resp. lfp(TΠ(∅,¬I−))) would
be a first-order theory instead of a set of ground atoms (e.g., see Example
5). However, these conditions suggest that instead of requiring each A ∈ I
be included in lfp(TfΠI (∅,¬I−)), answer sets of a logic program Π with first-
order formulas can be defined by requiring that each A ∈ I is true in the
fixpoint lfp(TfΠI (∅,¬I−)) under the constraints ¬I−; i.e., for each A ∈ I,
lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A. This leads to the following definition.

Definition 6. Let I be a model of a logic program Π. Then I is an answer
set of Π if for each A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A.

15

Example 6. In Example 5, I = {C,D} is a model of Π and the fixpoint is
lfp(TfΠI (∅,¬I−)) = {A∨(¬B∧C), D}. Obviously, lfp(TfΠI (∅,¬I−))∪¬I− |=
D. Since ¬A,¬B are in ¬I−, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= C. Thus, I is an
answer set of Π under Definition 6.

Example 7. In Example 2, I = {p(−1), p(1)} is an FLP answer set of
Π2 and fΠI

2 = {r2, r3}. Since neither of the bodies of r2 and r3 is en-
tailed by ¬I−, T 1

fΠI
2
(∅,¬I−) = T 0

fΠI
2
(∅,¬I−) = ∅; thus we have the fix-

point lfp(TfΠI
2
(∅,¬I−)) = ∅. Neither p(−1) nor p(1) can be proved true

in lfp(TfΠI
2
(∅,¬I−)) under the constraints ¬I−; therefore, I is not an answer

set of Π2 under Definition 6.

By Theorem 1, it is immediate that a model I of a logic program Π is an
answer set of Π if and only if for each A ∈ I, lfp(TΠ(∅,¬I−)) ∪ ¬I− |= A.
The next result shows such answer sets are minimal models.

Theorem 3. Every answer set I of a logic program Π is a minimal model
of Π and furthermore, a minimal model of the FLP reduct fΠI .

It is immediate from Theorem 3 and Definition 2:

Corollary 2. Every answer set I of a logic program Π is an FLP answer
set of Π.

Every answer set I of Definition 6 has a level mapping, which is built from
the FLP reduct fΠI via the sequence 〈T ifΠI (∅,¬I−)〉∞i=0, such that for each

A ∈ I, A is at level k > 0 if T kfΠI (∅,¬I−)∪¬I− |= A but T k−1
fΠI (∅,¬I−)∪¬I− 6|=

A. We distinguish between two cases.
The first case is that Π is a logic program whose rule heads are atoms,

meaning that for any k > 0, T kfΠI (∅,¬I−) consists of ground atoms. Let

S = 〈S0, S1, · · · , Sm〉 be a partition of I, where S0 = ¬I−, for i > 0 Si
consists of all A ∈ I at level i, and

⋃
1≤i≤m Si = I. Note that for any k > 0⋃

1≤i≤k Si = T kfΠI (∅,¬I−). Then, for every A ∈ I at level k > 0, there exists

some rule r ∈ fΠI ⊆ ground(Π) such that head(r) = A and body(r) is true
in T k−1

fΠI (∅,¬I−) ∪ ¬I− =
⋃

0≤i≤k−1 Si. By Definition 4, S is a level mapping
of I.

The second case is that Π is a logic program whose rule heads are arbitrary
first-order formulas. Due to first-order formulas in rule heads, we cannot

16

define level mappings for its answer sets as in Definition 4. However, by
definition of the sequence 〈T ifΠI (∅,¬I−)〉∞i=0, such an answer set I is non-
circularly justified as shown in the following two cases.

1. For each A ∈ I at level 1, there are rules r1, . . . , rm (m > 0) with
an empty body in ground(Π) such that (

⋃
1≤k≤m head(rk)) ∪ ¬I− |=

A. Since the entailment operation is non-circular, A is non-circularly
justified.

2. For each A ∈ I at level i > 1, there are rules r1, . . . , rm (m > 0) in
ground(Π) such that: (1) for each rk, 1 ≤ k ≤ m, T i−1

fΠI (∅,¬I−)∪¬I− |=
body(rk) but T i−2

fΠI (∅,¬I−)∪¬I− 6|= body(rk), and (2) (
⋃

1≤k≤m head(rk))∪
T i−1
fΠI (∅,¬I−) ∪ ¬I− |= A. This means that A is supported by the rule

bodies
⋃

1≤k≤m body(rk) which are true in T i−1
fΠI (∅,¬I−) ∪ ¬I−. Since

all answers entailed by T i−1
fΠI (∅,¬I−) ∪ ¬I− are at lower levels than A,

A is non-circularly justified by these answers.

Hence, answer sets of Definition 6 are FLP answer sets (by Corollary 2)
enhanced with a level mapping, which makes them free of circular justifica-
tions. For this reason, we call answer sets of Definition 6 well-justified FLP
answer sets and the associated semantics the well-justified FLP answer set
semantics.

In the well-justified FLP answer set semantics, we treat an FLP reduct
fΠI as if-then rules H ← B, instead of classical implications B ⊃ H, by
iteratively applying these rules to compute the fixpoint lfp(TfΠI (∅,¬I−)).
This process induces a level mapping on well-justified FLP answer sets. In
contrast, the FLP answer set semantics (Definition 2) identifies fΠI with a set
of classical implications by computing minimal models of these implications;
this process does not induce a level mapping on FLP answer sets. The
following example further illustrates the difference.

Example 8. Consider the following two logic programs:

Π : p ∨ q. r1

p← q. r2

q ← p. r3

Π′ : p ∨ q. r′1
q ⊃ p. r′2
p ⊃ q. r′3

17

Note that Π is a logic program with first-order formulas, instead of a dis-
junctive logic program as introduced in (Gelfond and Lifschitz, 1991), since
p ∨ q is a classical disjunction instead of an epistemic disjunction.3

I = {p, q} is the only minimal model of the two programs. fΠI = Π
and fΠ′I = Π′. Under the FLP answer set semantics, Π is identified with Π′

and I is an FLP answer set of Π if and only if it is a minimal model of Π′.
Consequently, I is both an FLP answer set of Π and of Π′.

Under the well-justified FLP answer set semantics, however, the two logic
programs function rather differently. For Π, I = {p, q} is a well-justified FLP
answer set if and only if the two rules r2, r3 are applicable if and only if one
of the two rule bodies is entailed by r1, i.e. p ∨ q |= q or p ∨ q |= p. This
condition, if satisfied, will induce a level mapping on I. The condition is
precisely conveyed by the fixpoint lfp(TfΠI (∅,¬I−)) = {p ∨ q} which entails
neither p nor q, meaning that I = {p, q} is not a well-justified FLP answer
set of Π. For Π′, since all rules r′1, r

′
2, r
′
3 are first-order formulas, I = {p, q}

is a well-justified FLP answer set if and only if Π′ |= q and Π′ |= p. This
condition is precisely captured by the fixpoint lfp(TfΠ′I (∅,¬I−)) = Π′ which
entails both p and q, meaning that I = {p, q} is a well-justified FLP answer
set of Π′.

For a model I of a normal logic program Π, lfp(TfΠI (∅,¬I−)) is a set of
ground atoms; by Definition 6, I is a well-justified FLP answer set of Π if
and only if I = lfp(TfΠI (∅,¬I−)). Then, by Corollary 1 the well-justified
FLP answer set semantics coincides with the standard answer set semantics
and thus coincides with the FLP answer set semantics. The following result
shows that a similar coincidence holds for logic programs whose rule bodies
are all empty.

Theorem 4. Let Π be a logic program whose rule bodies are all empty. Then
a model I of Π is a well-justified FLP answer set of Π if and only if I is a
minimal model of Π if and only if I is an FLP answer set of Π.

3Epistemic disjunctions are usually expressed using the epistemic operator | in the
literature. A classical disjunction A ∨ ¬A is a tautology, but an epistemic disjunction
A | ¬A is not a tautology since it does not follow the law of the excluded middle (see
(Ferraris and Lifschitz, 2005) for detailed explanations).

18

4. Well-Justified FLP Answer Sets for Logic Programs with Ag-
gregates

We first extend the first-order language LΣ of Section 2 to aggregate
functions, such as COUNT, SUM, TIMES, MIN and MAX. An aggregate
function maps a finite set of elements in a domain to a value in a range. For
simplicity, we assume the range of each aggregate function is a set of (positive
and negative) integers and the signature Σ of LΣ contains all integers (as
constants).

Aggregates involve comparison operators, such as =,≤,≥, <,>, etc.,
which define binary relations over integers. We assume that aggregate func-
tion symbols and comparison operators are not included in Σ.

Aggregate Atoms. An aggregate atom (aggregate for short) in LΣ is of
the form

OP〈(D,X) : F (X)〉 � b,

where (1) OP is an aggregate function symbol; (2) D ⊆ NΣ is the domain of
OP; (3) X is an aggregate variable, which takes on values from D; (4) F (X) is
a first-order formula; (5) � is a comparison operator; and (6) b is an integer.

Note that X is bounded by D, and that X can be easily extended to a list
of aggregate variables. We may omit D when it is clear from context. F (X)
may contain the aggregate variable X or other variables; if F (X) contains
no variable, the aggregate atom is called a ground aggregate atom.

Definition 7. A logic program Π with aggregate atoms is a finite set of rules
of the form H ← B, where H and B are first-order formulas extended with
aggregate atoms.

The grounding ground(Π) of a logic program Π with aggregate atoms
is obtained by replacing every free variable except aggregate variables in
Π with a constant in CΠ. To make the computation of aggregate atoms
feasible, we assume that the domain D of each aggregate function is finite,
and in particular consists of constants from CΠ. We also assume that for
each aggregate atom OP〈(D,X) : F (X)〉 � b in ground(Π), except X all
variables in F (X) are in the scope of a quantifier in F (X).

For an interpretation I, we compute each aggregate atomA = OP〈(D,X) :
F (X)〉 � b in ground(Π) w.r.t. I as follows. Let

SIA = {a | a ∈ D such that I satisfies F (a)}

19

Then I satisfies A if OP(SIA) � b holds, and I satisfies ¬A if I does not
satisfy A. 4

Once the satisfaction relation of LΣ is extended to aggregate atoms, the
entailment relation |= is extended accordingly. Thus the operator TΠ(O,N)
(Definition 5) can be applied to logic programs with aggregate atoms in
the same way as logic programs with first-order formulas, and Definition 6
directly extends to such logic programs, i.e., a model I of a logic program
Π with aggregate atoms is a well-justified FLP answer set of Π if for every
A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A. All results (Theorems, Lemmas, and
Corollaries) obtained in Section 3 for logic programs with first-order formulas
hold with the same proofs for logic programs with aggregate atoms. By
Corollary 2, well-justified FLP answer sets of logic programs with aggregate
atoms are FLP answer sets enhanced with a level mapping and thus are free
of circular justifications.

Example 9. Consider the following logic program with aggregate atoms
(borrowed from Bartholomew et al. (2011)):

Π3 : p(2)← ¬SUM〈({−1, 1, 2}, X) : p(X)〉 < 2. r1

p(−1)← SUM〈({−1, 1, 2}, X) : p(X)〉 ≥ 0. r2

p(1)← p(−1). r3

SUM〈({−1, 1, 2}, X) : p(X)〉 is an aggregate function, where X is an aggre-
gate variable with the domain {−1, 1, 2}, which sums up all X in the domain
such that p(X) is true. Let A1 = SUM〈({−1, 1, 2}, X) : p(X)〉 < 2 and A2 =
SUM〈({−1, 1, 2}, X) : p(X)〉 ≥ 0 be the two aggregate atoms in Π3. For an
interpretation I = {p(−1), p(1)}, we have

SIA1
= SIA2

= {a | a ∈ {−1, 1, 2} such that I satisfies p(a)} = {−1, 1}

and
SUM(SIA1

) = SUM(SIA2
) = SUM({−1, 1}) = 0,

so I satisfies the two aggregate atoms A1 and A2. Then the FLP reduct is
fΠI

3 = {r2, r3}. As I is a minimal model of fΠI
3, it is an FLP answer set

of Π3 (by Definition 2). However, I is not a well-justified FLP answer set.

4Note that aggregates over multisets can be readily supported using a list X = X1,
. . . , Xn of aggregate variables Xi and defining OP(SI

A) to work on the first component of
the tuples in SI

A = {(a1, . . . , an) ∈ Dn | I satisfies F (a1, . . . , an)} (as in the dlv system).

20

We have lfp(TfΠI
3
(∅,¬I−)) = ∅, and hence answers in I are not proved true

in the fixpoint under the constraints ¬I−. This FLP answer set has circular
justifications similar to those of Π2 in Example 2. Observe that Π3 represents
the same knowledge as Π2 because the rule body ¬SUM〈({−1, 1, 2}, X) :
p(X)〉 < 2 in Π3 can be interpreted as the formula p(2) ∧ (¬p(−1) ∨ p(1))
in Π2, while SUM〈({−1, 1, 2}, X) : p(X)〉 ≥ 0 in Π3 interpreted as ¬p(−1)∨
p(1) ∨ p(2) in Π2.

Example 10. Consider the logic program Π1 in Example 1 again. The ag-
gregate function SUM〈X : p(X)〉 has an aggregate variable X whose domain
is implicitly assumed to be {−1, 1, 2}. Let A = SUM〈X : p(X)〉 ≥ 1 be the
aggregate atom in Π1. For interpretation I = {p(1), p(−1), p(2)}, we have

SIA = {a | a ∈ {−1, 1, 2} such that I satisfies p(a)} = {1,−1, 2}.

SUM(SIA) = 2, so I satisfies A. The FLP reduct of Π1 w.r.t. I is Π1 itself.
I is an FLP answer set of Π1, but it is not a well-justified FLP answer set.
The fixpoint is lfp(TfΠI

1
(∅,¬I−)) = {p(1)} and neither p(−1) nor p(2) in I is

proved true in the fixpoint under the constraints ¬I−.

Many aggregate atoms can be represented in an abstract form as abstract
constraint atoms (or c-atoms) (Marek and Truszczyński, 2004). Next we
further extend the first-order language LΣ to encompass c-atoms.

Constraint Atoms. A c-atom is a pair (V,C), where V , the domain of
the c-atom, is a finite subset of HΣ, and C, the admissible solutions of the
c-atom, is a collection of sets of atoms in V . For instance, the aggregate atom
SUM〈{−1, 1, 2}, X) : p(X)〉 < 2 in Π3 can be represented as a c-atom (V,C),
where V = {p(−1), p(1), p(2)} and C = {∅, {p(−1)}, {p(1)}, {p(−1), p(1)},
{p(−1), p(2)}}. The first solution ∅ in C means that none of p(−1), p(1), p(2)
in the domain is true, while the last solution {p(−1), p(2)} in C means that
only p(−1) and p(2) are true. Clearly, in all such cases SUM〈{−1, 1, 2}, X) :
p(X)〉 < 2 holds.

Definition 8. A logic program Π with c-atoms is a finite set of rules of the
form H ← B, where H and B are first-order formulas extended with c-atoms.

An interpretation I satisfies a c-atom (V,C) if I ∩ V ∈ C; I satisfies
¬(V,C) if I does not satisfy (V,C); the entailment relation |= and the op-
erator TΠ(O,N) extend accordingly to logic programs with c-atoms. All

21

definitions and results from above for aggregate atoms, including the notion
of well-justified FLP answer sets, carry over to logic programs with c-atoms.

As far as we can determine, the well-justified FLP answer set semantics
is the first answer set semantics that is free of circular justifications for logic
programs with first-order formulas as well as aggregate atoms or c-atoms.
Two notable exceptions are the three-valued fixpoint semantics of Pelov et al.
(2007) for the class of logic programs whose rule heads are atoms and the
conditional satisfaction-based semantics of Son et al. (2007) for a special class
of logic programs with aggregate atoms resp. c-atoms called positive basic
logic programs. (The latter semantics is essentially a reformulation of the
former.) Since answer sets under the two semantics are free of circular jus-
tifications, we next study their relationship to the well-justified FLP answer
set semantics.

4.1. Relation to the Three-Valued Fixpoint Semantics of Pelov et al. (2007)

For simplicity of presentation, in this subsection we consider only proposi-
tional logic programs and disregard aggregate atoms, which will be addressed
in Section 4.2.

For a logic program Π whose rule heads are atoms, in (Denecker et al.,
2001; Pelov et al., 2007) a three-valued fixpoint semantics was introduced
based on a three-valued fixpoint operator ΦΠ. Answer sets under this se-
mantics are called two-valued stable models.

A three-valued (Herbrand) interpretation of Π is Î = (I1, I2), where I1 ⊆
I2 ⊆ HBΠ. Intuitively, atoms in I1 are assigned the truth value t, atoms in
I2 \ I1 assigned u, and atoms in HBΠ \ I2 assigned f . These truth values
are ordered by the truth order ≤t with f ≤t u ≤t t. Negation on these
truth values is defined as ¬f = t,¬u = u and ¬t = f . The truth value of
a propositional formula F under Î, denoted Î(F), is defined recursively as
follows:

Î(F) =


t (resp. u and f) if F is in I1 (resp. I2 \ I1 and HBΠ \ I2)

min≤t{Î(F1), Î(F2)} if F = F1 ∧ F2

max≤t{Î(F1), Î(F2)} if F = F1 ∨ F2

¬Î(F1) if F = ¬F1

Note that F1 ⊃ F2 is an abbreviation for ¬F1 ∨ F2. Then Î satisfies F if
Î(F) = t.

Given a three-valued interpretation Î = (I1, I2), the three-valued operator
ΦΠ(I1, I2) = (I ′1, I

′
2) is defined such that

22

I ′1 = {head(r) | r ∈ Π and Î(body(r)) = t}, and

I ′2 = {head(r) | r ∈ Π and Î(body(r)) = t or Î(body(r)) = u}.
Let Φ1

Π(I1, I2) denote the first element of ΦΠ(I1, I2), i.e. I ′1, and Φ2
Π(I1, I2)

denote the second element I ′2. When I2 is fixed, we compute a sequence
x0 = ∅, x1 = Φ1

Π(x0, I2), · · · , xi+1 = Φ1
Π(xi, I2), · · · , until a fixpoint, denoted

St↓Φ(I2), is reached. Similarly, when I1 is fixed, we compute a sequence
x0 = I1, x1 = Φ2

Π(I1, x0), · · · , xi+1 = Φ2
Π(I1, xi), · · · , until a fixpoint St↑Φ(I1)

is reached. The stable revision operator StΦ on Î = (I1, I2) is defined as

StΦ(I1, I2) = (St↓Φ(I2), St↑Φ(I1)).

By iteratively applying StΦ such that St0Φ(I1, I2) = (I1, I2) and for i > 0,
StiΦ(I1, I2) = StΦSt

i−1
Φ (I1, I2), we obtain a fixpoint, denoted lfp(StΦ(I1, I2)).

The three-valued fixpoint semantics of (Denecker et al., 2001; Pelov et al.,
2007) is then defined in terms of lfp(StΦ(I1, I2)). Let I be a two-valued model
of Π (as defined in Section 2.2). I is called a two-valued stable model of Π if
lfp(StΦ(I, I)) = (I, I).

We observe that there are at least three significant differences between the
three-valued fixpoint semantics and the well-justified FLP answer set seman-
tics. First, the three-valued fixpoint semantics is defined over three-valued
interpretations, while the well-justified FLP answer set semantics is defined
over two-valued interpretations. Second, the three-valued fixpoint seman-
tics is applicable only to logic programs whose rule heads are atoms, while
the well-justified FLP answer set semantics applies to logic programs whose
rule heads are arbitrary first-order formulas. Third, as shown below the
three-valued fixpoint semantics is more conservative than the well-justified
FLP answer set semantics in the sense that two-valued stable models of the
three-valued fixpoint semantics are well-justified FLP answer sets, which by
Corollary 2 are also FLP answer sets, but the converse does not hold.

Theorem 5. Let Π be a propositional logic program whose rule heads are
atoms and let I be a two-valued stable model of Π under the three-valued
fixpoint semantics. Then I is also a well-justified FLP answer set of Π.

However, a well-justified FLP answer set is not necessarily a two-valued
stable model. As an example, consider the logic program Π = {p← ¬p∨ p}.
I = {p} is a two-valued model of Π. Since the rule body ¬p∨p is a tautology
in classical logic, I is a well-justified FLP answer set of Π. However, I is not
a two-valued stable model under the three-valued fixpoint semantics since
lfp(StΦ({p}, {p})) = (∅, {p}).

23

4.2. Relation to Conditional Satisfaction-Based Semantics of Son et al. (2007)

Son et al. (2007) defined an answer set semantics for a special class of
logic programs with aggregate atoms resp. c-atoms called positive basic logic
programs.

Definition 9. A positive basic logic program is a finite set of function and
equality free rules of the form A← A1 ∧ · · · ∧Am, where A is a ground atom
and each Ai is a c-atom.

Note that any ground atom A can be represented as an elementary c-atom
({A}, {{A}}), and ¬A represented as a c-atom ({A}, {∅}). For any c-atom
(V,C), ¬(V,C) can be represented as a c-atom (V, 2V \ C), where 2V is the
power set of V . Therefore, for any normal logic program Π with c-atoms,
its grounding ground(Π) can be represented in this way by an equivalent
positive basic logic program.

Son et al. (2007) defined answer sets for positive basic logic programs
based on a notion of conditional satisfaction. Let R and S be two sets of
ground atoms with R ⊆ S. For a c-atom A = (V,C), R conditionally satisfies
A w.r.t. S, denoted R |=S A, if for every F with R∩V ⊆ F ⊆ S∩V , F ∈ C;
for a ground atom A, R |=S A if R |=S ({A}, {{A}}).

For a positive basic logic program Π, define the following one-step prov-
ability operator:

ΓΠ(R, S) = {A | A← body(r) ∈ Π and R |=S body(r)}.

Son et al. proved that if the second argument S of ΓΠ(R, S) is a model
of Π, then the sequence 〈ΓiΠ(∅, S)〉∞i=0, where Γ0

Π(∅, S) = ∅ and for i > 0
ΓiΠ(∅, S) = ΓΠ(Γi−1

Π (∅, S), S), is monotone and will converge to a fixpoint
lfp(ΓΠ(∅, S)). Based on this, a model I of Π is a conditional satisfaction
based answer set of Π, if I = lfp(ΓΠ(∅, I)).

It is not hard to see that conditional satisfaction of a c-atom is closely
related to our notion of entailment as follows.

Lemma 2. Let I be a model of a positive basic logic program Π. For every
R ⊆ I and c-atom A occurring in Π, R |=I A if and only if R ∪ ¬I− |= A.

Consequently, the stages lfp(TΠ(∅,¬I−)) and lfp(ΓΠ(∅, I)) of the opera-
tors TΠ and ΓΠ, respectively, coincide for models I of Π; we thus obtain:

24

Theorem 6. A model I of a positive basic logic program Π is a well-justified
FLP answer set if and only if I is a conditional satisfaction based answer set
of Π.

As positive basic logic programs are a class of logic programs with c-
atoms, this result suggests that (1) the well-justified FLP answer set seman-
tics is a proper extension of the conditional satisfaction-based answer set
semantics, and (2) answer sets according to the latter are free of circular
justifications.

For positive basic logic programs, (Son et al., 2007) showed that the con-
ditional satisfaction-based answer set semantics agrees with the three-valued
fixpoint semantics of (Denecker et al., 2001; Pelov et al., 2007). By Theorem
6, for such logic programs the well-justified FLP answer set semantics also
agrees with the three-valued fixpoint semantics and thus can be also regarded
as an extension of the latter to logic programs with c-atoms.5

5. Well-Justified FLP Answer Sets for Description Logic Programs

In principle, the above method of defining well-justified FLP answer sets
can be applied to different types of logic programs, provided that the sat-
isfaction relation of LΣ is extended to those logic programs. As another
important application, in this section we define well-justified FLP answer
sets for dl-programs (Eiter et al., 2005, 2008). Other well-known types of
logic programs, such as hex-programs (Eiter et al., 2005), tightly coupled dl-
programs (Lukasiewicz, 2010), and modular logic programs (Dao-Tran et al.,
2009), can be handled in a similar way.

A dl-program can be viewed as a normal logic program enhanced with
an interface to access an external DL knowledge base, so we begin by briefly
introducing DL knowledge bases.

5.1. DL Knowledge Bases

We assume familiarity with the basics of description logics (Baader et al.,
2010), and for simplicity consider SHOIN , a DL underlying the Web on-
tology language OWL DL (Horrocks et al., 2003). The approach presented
in this paper can easily be extended to other more expressive DLs such

5Technically, for atomic rule heads it can be captured in the framework of (Denecker
et al., 2001; Pelov et al., 2007).

25

as SROIQ (a logical underpinning for OWL 2) (Horrocks et al., 2006;
Grau et al., 2008), and to DLs with datatypes such as SHOIN (D) and
SROIQ(D). As well, it can be adjusted for light-weight description logics
such as DL-Lite (Calvanese et al., 2007) or EL++ (Baader et al., 2005).

Consider a signature Ψ = (A ∪R, I), where A, R and I are pairwise
disjoint (denumerable) sets of atomic concepts, atomic roles and individuals,
respectively. A role is either an atomic role R from R or its inverse, de-
noted R−. General concepts C are formed from atomic concepts, roles and
individuals, according to the following syntax:

C ::=> | ⊥ | A | {a} | C uD | C tD | ¬C | ∃R.C | ∀R.C | ≥n R | ≤n R

where A is an atomic concept from A, R is a role, a is an individual from I, C
and D are concepts, and n is a non-negative integer. An axiom is of the form
C v D (concept inclusion axiom), R v R1 (role inclusion axiom), Trans(R)
(transitivity axiom), C(a) (concept membership axiom), R(a, b) (role mem-
bership axiom), a ≈ b (equality axiom), or a 6≈ b (inequality axiom), where
R,R1 are atomic roles in R, and a, b are individuals in I. We use C ≡ D to
denote C v D and D v C.

Note that for a concept inclusion axiom C v D, we can express its nega-
tion ¬(C v D) by a concept membership axiom (C u ¬D)(b), where b is a
fresh individual in I.

A DL knowledge base L is a finite set of axioms. Since DLs are fragments
of first-order logic with equality, where atomic concepts (resp. roles) are
unary (resp. binary) predicate symbols, and individuals are constants, L has
first-order semantics. Therefore, L is consistent (or satisfiable) if L has a
first-order model. For an axiom F , the entailment relation L |= F is defined
as in first-order logic. Note that if L is inconsistent, then L |= F for every
formula F . When we say ‘predicate symbols in L’, we refer to atomic concepts
or atomic roles in L.

5.2. Dl-Programs

Let L be a DL knowledge base built over a signature Ψ = (A ∪R, I).
Let Φ = (P,C) be a signature built from the signature Σ of the first-order
language LΣ of Section 2, where P ⊆ P is a finite set of predicate symbols
and C ⊆ C a nonempty finite set of constants, such that P ∩ (A ∪R) = ∅
and C ⊆ I. Terms and atoms are defined only using constants in C, variables
in V , and predicate symbols in P. An equality (resp. inequality) is of the
form t1 ≈ t2 (resp. t1 6≈ t2), where t1 and t2 are terms.

26

A dl-query is built over the signatures Ψ and Φ, which is either (i) a
concept inclusion axiom F or its negation ¬F ; or (ii) of the form C(t) or
¬C(t), where C is a concept, and t is a term; or (iii) of the form R(t1, t2)
or ¬R(t1, t2), where R is a role, and t1 and t2 are terms; or (iv) of the form
t1 ≈ t2 or t1 6≈ t2, where t1 and t2 are terms. For convenience, we denote a
dl-query by Q(t), where t is all terms of the dl-query (e.g., t1 and t2 in (iii)),
and Q is the other part (e.g., R or ¬R in (iii)).

A dl-atom is of the form DL[S1op1p1, . . . , Smopmpm; Q](t), where each
Si is a concept or role built from A ∪R, or an equality/inequality symbol;
opi ∈ {], −∪, −∩} is an operator; pi ∈ P is a unary predicate symbol if Si is
a concept, and a binary predicate symbol otherwise; and Q(t) is a dl-query.
Note that each Siopipi maps a predicate symbol pi in P to a concept or role
Si over A ∪R via a special interface operator opi. Each pi, 1 ≤ i ≤ m, is
called an input predicate symbol, and each atom with a predicate symbol pi
called an input atom.

A dl-rule (or rule) is of the form

H ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn

where H is an atom, each Ai is either an atom, an equality/inequality or a
dl-atom, and each Bi is an atom or a dl-atom. Each ¬Bi is also called a
negative literal.

Definition 10 (Eiter et al. (2005, 2008)). A dl-program Π relative to an
external DL knowledge base L is a finite set of dl-rules.

A ground instance of a rule r is obtained by first replacing every variable in
r with a constant from C, then removing all valid equalities and inequalities
(under the unique name assumption). A ground instance of r is consistent if
it contains no equalities or inequalities. Let ground(Π) denote the set of all
consistent ground instances of rules in Π.

5.3. The Well-Justified FLP Answer Set Semantics

The semantics of a dl-program Π relative to L is defined in terms of
Herbrand interpretations, where the Herbrand base HBΠ of Π is the set of
ground atoms p(a1, . . . , an) such that p ∈ P occurs in Π and each ai is in C.

The satisfaction relation is extended to dl-atoms in the following way. Let
I be a Herbrand interpretation of Π andA = DL[S1op1p1, . . . , Smopmpm;Q](c)
be a dl-atom occurring in ground(Π). Then I satisfies the dl-atom A if

27

L ∪
⋃m
i=1Ai(I) |= Q(c), where for 1 ≤ i ≤ m, Ai(I) is defined by the predi-

cate mapping Siopipi such that

Ai(I) =


{Si(e) | pi(e) ∈ I}, if opi =];
{¬Si(e) | pi(e) ∈ I}, if opi = −∪;
{¬Si(e) | pi(e) 6∈ I}, if opi = −∩ .

This extended satisfaction relation to dl-atoms is called satisfaction under
L, denoted |=L, in Eiter et al. (2008). Therefore, a Herbrand interpretation I
is a model of a dl-program Π relative to L if I satisfies all rules in ground(Π).

A ground dl-atom A is monotonic relative to Π and L if for every I ⊆
J ⊆ HBΠ, it holds that I satisfies A implies J satisfies A; otherwise, A is
nonmonotonic. A dl-program Π is positive if it has no negative literals in
rule bodies and every dl-atom occurring in ground(Π) is monotonic. Note
that a positive dl-program Π has a least model.

For a Herbrand interpretation I, let sΠI
L be the (strong) reduct obtained

from ground(Π) by deleting (i) every rule r whose body is not satisfied by I,
and (ii) from the remaining rules all negative literals and all nonmonotonic
dl-atoms. Furthermore, let wΠI

L be the reduct defined like sΠI
L except that

in (ii) all negative literals and all dl-atoms are deleted.
Eiter et al. (2008) defined the weak answer set semantics in terms of the

reduct wΠI
L. A Herbrand interpretation I is a weak answer set of Π relative

to L if I is the least model of wΠI
L.

However, Eiter et al. noted as an obvious disadvantage of the weak answer
set semantics that it may produce “unfounded” answer sets with circular
justifications by self-supporting loops, which they illustrated on the following
example.

Example 11. Consider the dl-program Π = {p(a) ← DL[c] p; c](a)} rela-
tive to a DL knowledge base L = ∅. Π has two weak answer sets: I1 = ∅ and
I2 = {p(a)}. The atom p(a) is circularly justified in I2 by the self-supporting
loop: p(a)⇐ DL[c] p; c](a)⇐ p(a).

To overcome the circular justification problem, Eiter et al. defined the
answer set semantics in terms of the reduct sΠI

L. A Herbrand interpretation
I is a strong answer set of Π relative to L if I is the least model of sΠI

L.
In general, strong answer sets are not minimal models of the underlying

dl-programs. To handle this, Eiter et al. (2005) considered the FLP answer
set semantics in terms of the FLP reduct fΠI

L, which consists of all rules

28

r ∈ ground(Π) such that I satisfies body(r). A Herbrand interpretation I is
an FLP answer set of Π relative to L if I is a minimal model of fΠI

L.
However, we observe that the problem of circular justifications persists

in both the strong answer set semantics and the FLP answer set semantics.
The next two dl-programs well illustrate this.

Example 12. Let Π = {p(a)← DL[c] p, b −∩ q; cu¬b](a)} be a dl-program
relative to L = ∅. The dl-atom DL[c] p, b −∩ q; c u ¬b](a) in Π queries L
whether a is an instance of the concept c but not of the concept b, under the
assumption that for any x, if p(x) is true,then x is in c, and if q(x) is false, then
x is not in b. This dl-atom is nonmonotonic, so both I1 = ∅ and I2 = {p(a)}
are strong answer sets of Π. Observe that p(a) is circularly justified in I2 by
the self-supporting loop: p(a)⇐ DL[c] p, b −∩ q; c u ¬b](a)⇐ p(a) ∧ ¬q(a).

Example 13. Let L = ∅ and Π consist of two rules: p(a) ← q(a) and
q(a) ← DL[c] p, b −∩ q; c t ¬b](a). Π has only one model I = {p(a), q(a)}.
The FLP reduct fΠI

L of Π w.r.t. I is fΠI
L = Π. Therefore, I is an FLP answer

set of Π. We see that p(a) is circularly justified in I by the self-supporting
loop: p(a)⇐ q(a)⇐ DL[c] p, b −∩ q; c t ¬b](a)⇐ p(a) ∨ ¬q(a)⇐ p(a).

The intuitive reason behind the circular justification problem of the above
three answer set semantics for dl-programs is that these semantics do not
induce a level mapping on their answer sets. We overcome the circular jus-
tification problem by extending our well-justified FLP answer set semantics
from logic programs with first-order formulas to dl-programs.

Note that dl-programs are logic programs extended with dl-atoms; given
the extension of satisfaction to dl-atoms, the entailment relation |= and the
operator TΠ(O,N) extend accordingly to dl-programs. Furthermore, the no-
tion of well-justified FLP answer sets for logic programs carries over to dl-
programs, as well as the properties in Section 3. In particular, Definition 6
is extended as follows.

Definition 11. A Herbrand model I of a dl-program Π relative to an ex-
ternal DL knowledge base L is a well-justified FLP answer set if for every
A ∈ I, lfp(TfΠI

L
(∅,¬I−)) ∪ ¬I− |= A.

By Corollary 2, such well-justified FLP answer sets for dl-programs are
FLP answer sets enhanced with a level mapping and thus are free of circular
justifications.

29

As the head of each rule in the grounding of a dl-program Π is a ground
atom, the fixpoint lfp(TfΠI

L
(∅,¬I−)) is a set of ground atoms. Thus for

each A in a Herbrand model I, lfp(TfΠI
L
(∅,¬I−)) ∪ ¬I− |= A if and only if

A ∈ lfp(TfΠI
L
(∅,¬I−)). This immediately leads to the following result.

Corollary 3. A Herbrand model I of a dl-program Π relative to a DL knowl-
edge base L is a well-justified FLP answer set if and only if I = lfp(TfΠI

L
(∅,¬I−)).

Example 14. For the two dl-programs Π in Examples 11 and 12, I1 = ∅ is
a well-justified FLP answer set, but I2 = {p(a)} is not. For the dl-program
Π in Example 13, I = {p(a), q(a)} is not a well-justified FLP answer set.

As it turns out, the weak, the strong, the FLP and the well-justified FLP
answer set semantics constitute a hierarchy of more restrictive notions of
answer sets.

Theorem 7. Every well-justified FLP answer set of a dl-program Π is an
FLP answer set of Π, which in turn is a strong answer set of Π which in
turn is a weak answer set of Π.

While this hierarchy is strict in general, for fragments of dl-programs
some of its classes may coincide, and in particular well-justified FLP answer
sets coincide with other notions of answer sets. We present some important
classes with this property.

A rich such fragment is the class of dl-programs in which only monotonic
dl-atoms occur in the rules. Note that a sufficient condition for this property
is that no −∩ operators occurs in dl-atoms (which can be efficiently checked).
Three out of the four answer set semantics coincide in this case.

Theorem 8. Let Π be a dl-program relative to a DL knowledge base L such
that Π contains no nonmonotonic dl-atoms. Then I ⊆ HBΠ is a well-justified
FLP answer set of Π if and only if I is an FLP answer set of Π if and only
if I is a strong answer set of Π.

Theorem 8 does not extend to weak answer sets. In Example 11, relative
to L = ∅ the dl-atom in Π = {p(a) ← DL[c] p; c](a)} is monotonic; while
{p(a)} is a weak answer set of Π, the program has no strong answer set.

Theorem 8 can be extended to another well-known class of dl-programs,
called stratified dl-programs (Eiter et al., 2008). The notion of a stratification
for dl-programs defines an ordered partition of the set of all ground atoms
and ground dl-atoms as follows.

30

Definition 12. Let Π be a dl-program relative to a DL knowledge base L.
Let S be the set of dl-atoms occurring in ground(Π). A stratification of Π is
a mapping µ : HBΠ ∪ S → {0, 1, . . . , k} such that

1. For each rule H ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn in ground(Π),
µ(H) ≥ µ(Ai) for 1 ≤ i ≤ m, and µ(H) > µ(Bi) for 1 ≤ i ≤ n, and

2. µ(D) ≥ µ(l) (resp. µ(D) > µ(l)) for each input atom l ∈ HBΠ of each
monotonic (resp. nonmonotonic) dl-atom D in S.

We call k the length of the stratification µ. ground(Π) is then partitioned
into k+1 dl-programs Π0, . . . ,Πk relative to L (called strata), where for each
i ∈ {0, . . . , k}, Πi = {r ∈ ground(Π) | µ(head(r)) = i} with HBΠi

= {l ∈
HBΠ | µ(l) = i}. Note that Π0 is a positive dl-program.

Definition 13 (Eiter et al. (2008)). A dl-program Π is stratified if it has
some stratification µ of some length k ≥ 0.

For a stratified dl-program Π, recursions occur only within each stratum
Πi; no recursion occurs across two strata. This makes the inference of answers
of predicates in lower strata independent of answers of predicates in higher
strata. Therefore, for every nonmonotonic dl-atom A (resp. every negative
literal ¬B) occurring in a rule body of stratum Πi, since all input atoms of
A (resp. B) are defined in lower strata than Πi, the truth of A (resp. ¬B) is
determined by the answers Ii−1 derived from the first i−1 strata. This leads
to the following transformation.

For a stratum Πi and a Herbrand interpretation Ii−1, let Πi(Ii−1) be the
set of rules obtained from Πi by deleting

(1) every rule H ← A1∧· · ·∧Am∧¬B1∧· · ·∧¬Bn such that either some Aj
is a nonmonotonic dl-atom not satisfied by Ii−1, or some Bj is satisfied
by Ii−1, and

(2) from the remaining rules all negative literals and all nonmonotonic dl-
atoms.

Note that Πi(Ii−1) is a positive dl-program.
The following result is immediate from (Eiter et al., 2008, Theorems 5.6

and 4.14).

31

Theorem 9. Let Π be a stratified dl-program relative to a DL knowledge
base L with k+1 strata Π0, . . . ,Πk. Then I ⊆ HBΠ is a strong answer set
of Π if and only if I = Ik, where I0 is the least model of Π0 and for each
1 ≤ i ≤ k, Ii is the least model of Πi(Ii−1) ∪ Ii−1.

Observe that for each i ∈ {0, . . . , k}, Ii is unique and thus I is unique,
i.e., a stratified dl-program Π has a unique strong answer set. On the other
hand, it is immediate from Theorem 9 that for every strong answer set I of
Π, we have I− = I−k , where I−i = (

⋃
0≤j≤iHBΠj

) \ Ii, for i = 0, . . . , k. Based
on this, the next result shows that for stratified dl-programs, all notions of
answer sets that we consider except weak answer sets coincide.

Theorem 10. Let Π be a stratified dl-program relative to a DL knowledge
base L. Then I ⊆ HBΠ is a well-justified FLP answer set of Π if and only if
I is an FLP answer set of Π if and only if I is a strong answer set of Π.

Furthermore, all semantics in Theorem 10 are canonical in the sense that
they yield a single answer set.

Theorem 10 can be extended to weak answer sets using a stronger notion
of stratification, which requires that in item 2 of Definition 12, µ(D) >
µ(l) for each input atom l of each (monotonic or nonmonotonic) dl-atom
D. This ensures that there is no cycle through any dl-atoms. In such a
dl-acyclic stratified program Π, the truth values of dl-atoms in rule bodies
are completely known when the rules should be applied. Therefore, for a
stratum Πi of Π and a Herbrand interpretation Ii−1, we can transform Πi to
Πi(Ii−1) by deleting

(1) every rule H ← A1 ∧ · · · ∧Am ∧¬B1 ∧ · · · ∧ ¬Bn such that either some
Aj is a dl-atom not satisfied by Ii−1, or some Bj is satisfied by Ii−1,
and

(2) from the remaining rules all negative literals and all dl-atoms.

Then using the same proof techniques for strong answer sets we can extend
Theorems 9 and 10 to weak answer sets.

6. Complexity of the Well-Justified FLP Semantics

Observe that a first-order theory amounts to a special logic program
in which all rules have an empty body. As it is undecidable to determine

32

whether a given arbitrary first-order theory is satisfiable, it is thus undecid-
able to determine whether a logic program has an FLP answer set resp. a
well-justified FLP answer set. Therefore, we concentrate in this paper on the
complexity of propositional logic programs (which are at the core of richer
languages) and consider only aggregates that are computable in polynomial
time (i.e., for any Herbrand interpretation I, checking whether I satisfies an
aggregate atom is feasible in polynomial time).

Recall that NP are the decision problems solvable by a nondeterministic
Turing machine in polynomial time, and that Σp

2 = NPNP is likewise but with
the help of an NP oracle. Furthermore, for every complexity class C, the class
co-C is the class of complementary problems (with yes-no answers reversed);
in particular, Πp

2 = co-Σp
2. We encounter in addition the complexity classes

NEXP (nondeterministic time 2poly(n)) and N2EXP (nondeterministic time

22poly(n)
), where poly(n) =

⋃
k≥1O(nk), and PNEXP and PN2EXP, which con-

tain all decision problems solvable in polynomial time with an NEXP resp.
N2EXP oracle. As shown by Hemachandra (1989), PNEXP coincides with its
nondeterministic counterpart NPNEXP; with his proof technique, the same is
easily established for PN2EXP and NPN2EXP.

We consider the following canonical reasoning problems:

1. Answer set existence: The problem of deciding whether a given logic
program Π has an answer set.

2. Cautious reasoning: The problem of deciding whether a ground atom
is in all answer sets of Π.

3. Brave reasoning: The problem of deciding whether a ground atom is in
some answer set of Π.

6.1. Complexity of Propositional Logic Programs

For a propositional logic program Π, we consider the FLP and the well-
justified FLP semantics defined over Herbrand models of Π. Our main com-
plexity results are summarized in Table 1. It is interesting to note that for
all of the three reasoning tasks, the FLP and the well-justified FLP answer
set semantics fall in the same complexity classes. This means that the well-
justified FLP answer set semantics enhances the FLP answer set semantics
with a level mapping formalism without affecting the worst-case complexity.

33

Table 1: Complexity of reasoning tasks for propositional logic programs under the FLP
and the well-justified FLP semantics.

Answer set existence Cautious reasoning Brave reasoning

FLP Σp
2-complete Πp

2-complete Σp
2-complete

Well-Justified FLP Σp
2-complete Πp

2-complete Σp
2-complete

The following theorem shows that for propositional logic programs, decid-
ing the existence of ordinary and well-justified FLP answer sets is complete
for NPNP.

Theorem 11. Given a propositional logic program Π, deciding whether Π
has an FLP answer set or a well-justified FLP answer set is both Σp

2-complete.

The next theorem shows that for propositional logic programs, decid-
ing whether a ground atom is in every (resp. some) FLP/well-justified FLP
answer set is complete for co-NPNP (resp. NPNP).

Theorem 12. Given a propositional logic program Π and an atom l ∈ HBΠ,
deciding whether l is in every (resp. some) FLP answer set of Π is Πp

2-com-
plete (resp. Σp

2-complete). The same holds for well-justified FLP answer sets.

The Σp
2- resp. Πp

2-hardness of the FLP and the well-justified FLP answer
set semantics for propositional logic programs is inherited to some particular
fragments, e.g., to propositional logic programs with rules H ← B with an
atomic head H. On the other hand, for some natural fragments the FLP
answer set semantics still remains Σp

2- resp. Πp
2-hard, while the well-justified

FLP answer semantics has presumably lower complexity; for example, for
propositional logic programs with rules H ← B, where H is a disjunction of
atoms and B a conjunction of literals, it is easily seen that the well-justified
FLP answer semantics for this fragment is NP- resp. co-NP-complete for the
above reasoning tasks.

The results for propositional logic programs are easily lifted to logic pro-
grams with quantifier-free rules, i.e., rules of the form H ← B where H
and B are quantifier-free formulas. The complexity in Theorems 11 and 12
increases by one exponential to NEXPNP resp. co-NEXPNP; intuitively, like
for normal logic programs this increase is due to the exponentially more suc-
cinct representation using variables, whose elimination by grounding causes
a blowup, cf. (Dantsin et al., 2001).

34

6.2. Complexity of Propositional Logic Programs with Aggregates

When propositional logic programs are extended with polynomially com-
putable aggregates, the complexity under the FLP and the well-justified FLP
answer set semantics falls in the same classes as that of propositional logic
programs without aggregates.

Theorem 13. Given a propositional logic program Π with polynomially com-
putable aggregate atoms, deciding (i) whether Π has some FLP answer set
is Σp

2-complete; (ii) whether a given atom l ∈ HBΠ is in every (resp. some)
FLP answer set of Π is Πp

2-complete (resp. Σp
2-complete). The same holds

for well-justified FLP answer sets.

The Σp
2- resp. Πp

2-hardness holds even for particular fragments such as
ground normal and ground Horn logic programs with polynomially com-
putable aggregates. A ground normal logic program Π with aggregate atoms
consists of rules of the form H ← B1 ∧ · · · ∧Bm ∧¬C1 ∧ · · · ∧ ¬Cn, where H
is a ground atom, and each Bi and Ci is either a ground atom or a ground
aggregate atom; Π is a ground Horn logic program with aggregate atoms if
n = 0 for every rule in Π.

Faber et al. (2011) showed that determining whether a given ground nor-
mal or Horn logic program with polynomially computable aggregates has an
FLP answer set is both Σp

2-complete. This result also holds for the well-
justified FLP answer set semantics.

Theorem 14. For a ground normal logic program Π with polynomially com-
putable aggregate atoms, deciding whether Π has some well-justified FLP an-
swer set is Σp

2-complete. Furthermore, Σp
2-hardness holds already for ground

Horn logic programs Π with polynomially computable aggregates.

It is immediate that the complexity classes of cautious and brave reason-
ing for ground normal or Horn logic programs with polynomially computable
aggregates are the same as those classes for propositional logic programs with
polynomially computable aggregates; i.e., Πp

2-complete for cautious reasoning
and Σp

2-complete for brave reasoning.
It is worth noting that while the results are analogous to those in Faber

et al. (2011), the setting of aggregates is different. In Faber et al.’s formalism,
ground aggregate atoms are essentially of the form

A = OP〈{(ai : Fi) | 1 ≤ i ≤ m}〉 � b

35

where ai is a constant and each Fi is a conjunction of ground atoms; an
interpretation I satisfies A if OP{ai | I satisfies Fi, 1 ≤ i ≤ m} � b evaluates
to true. Thus A amounts in our framework to an aggregate atom

A′ = OP〈({a1, . . . , am}, X) :
∨m
i=1X ≈ ai ∧ Fi〉 � b.

Faber et al. showed that Σp
2-hardness of the FLP answer set semantics is

present already for a ground normal logic program Π with polynomially
computable ground aggregate atoms of form A, where m and the size of
each Fi are bounded by a constant k. However, for Π′ that is Π with all
aggregate atoms A replaced by A′, deciding the existence of a well-justified
answer set of Π′ lies in NP. Informally, this holds because in this case, in the
fixpoint computation T ifΠ′I (∅,¬I

−) all possible values of aggregation sets SJA′

for all interpretations J that satisfy T ifΠ′I (∅,¬I
−) ∪ ¬I− can be determined

in polynomial time (in the bound k).
As the semantics of a nonground normal logic program Π with aggre-

gates is defined in terms of its grounding ground(Π), it is natural to view
a nonground aggregate atom A as polynomially computable if each ground
instance of A is polynomially computable. Intuitively, since grounding causes
an exponential blowup, the complexity of nonground normal logic programs
with polynomially computable aggregates is exponentially higher than in the
ground case, and thus complete for NEXPNP resp. co-NEXPNP.

Although it is interesting to study in what cases an aggregate atom is
polynomially computable, the topic is beyond the scope of the current paper.
As a showcase, however, we mention a class of aggregate atoms of the form

A′′ = OP〈(D1, X1), . . . , (Dn, Xn) : F (X)〉 � b

where X = X1, . . . , Xn is a list of aggregate variables with corresponding
domains D1, . . . , Dn, and F (X) is a formula with no quantifiers, no function
symbols, and no variables other than the Xis. Note that aggregate atoms of
form A′ above are in this class. Such an aggregate atom A′′ is polynomially
computable if deciding whether a given (Herbrand) interpretation I satisfies
A′′ can be done in time polynomial in the size of I and A′′; this is ensured if
the number n of aggregate variables is bounded by a constant and OP can
be calculated in polynomial time.

6.3. Complexity of Dl-Programs

The complexity of the FLP and the well-justified FLP answer set seman-
tics for a dl-program Π relative to a DL knowledge base L depends on the

36

Table 2: Complexity of reasoning tasks for dl-programs Π relative to a DL knowledge base
L under the FLP and the well-justified FLP answer set semantics.

Answer set existence Cautious reasoning Brave reasoning

L in SHIF(D) NEXP-complete co-NEXP-complete NEXP-complete

L in SHOIN (D) PNEXP-complete PNEXP-complete PNEXP-complete

L in SROIQ(D) PN2EXP-complete PN2EXP-complete PN2EXP-complete

class of DL that L belongs to. Table 2 summarizes the complexity results
when L is in SHIF(D), SHOIN (D) and SROIQ(D), respectively.

We first prove the following two theorems for the well-justified FLP an-
swer set semantics.

Theorem 15. Given a dl-program Π relative to a DL knowledge base L,
deciding whether Π has some well-justified FLP answer set is (i) NEXP-
complete if L is in SHIF(D), (ii) PNEXP-complete if L is in SHOIN (D),
and (iii) PN2EXP-complete if L is in SROIQ(D).

Theorem 16. Given a dl-program Π relative to a DL knowledge base L
and an atom l ∈ HBΠ, deciding whether l is in every (resp. some) well-
justified FLP answer set of Π is complete for (i) co-NEXP (resp. NEXP) if
L is in SHIF(D), (ii) PNEXP (resp. PNEXP) if L is in SHOIN (D), and
(iii) PN2EXP (resp. PN2EXP) if L is in SROIQ(D).

The next theorem shows that the FLP answer set semantics has the same
complexity classes on the problem of answer set existence as the well-justified
FLP answer set semantics.

Theorem 17. Given a dl-program Π relative to a DL knowledge base L,
deciding whether Π has some FLP answer set is (i) NEXP-complete if L is
in SHIF(D), (ii) PNEXP-complete if L is in SHOIN (D), and (iii) PN2EXP-
complete if L is in SROIQ(D).

Since cautious (resp. brave) reasoning for dl-programs falls in the same
complexity classes as the non-existence (resp. existence) of FLP answer sets,
it immediately follows from Theorem 17 that the complexity classes of cau-
tious (resp. brave) reasoning under the FLP answer set semantics is the same
as those classes under the well-justified FLP answer set semantics.

37

We finally note that analogous upper bounds (i.e., membership results) to
those in Table 2 hold for dl-programs over description logics where knowledge
base satisfiability has the same complexity as for SHIF(D), SHOIN (D) or
SROIQ(D) (which is EXP- , NEXP- and N2EXP-complete, respectively).
However, matching lower bounds (i.e., corresponding hardness results) are
not entailed by our results.

7. Implementation of the Well-Justified FLP Semantics

We have implemented the well-justified FLP answer set semantics and
developed a system that hosts normal logic programs with aggregates, dl-
programs and, moreover, hex-programs (which we did not consider here).
In this section, we describe the algorithm used for the implementation and
the architecture of the system. We also describe an experimental evaluation
of the performance of computing both FLP and well-justified FLP answer
sets over some benchmark logic programs.

For simplicity, in the following description we restrict to ground logic
programs. A complex atom is either an aggregate atom, a dl-atom, or an
external atom, so by a normal logic program with complex atoms we refer
to a normal logic program with aggregate atoms, a dl-program, or a hex-
program. All complex atoms A are assumed to be decidable, i.e., for any
Herbrand interpretation I, checking whether I satisfies A is feasible in finite
time.

7.1. Implementation Description

Our algorithm for computing well-justified FLP answer sets consists of
two main parts: a guessing and a checking part. Given a normal logic pro-
gram Π with complex atoms, the guessing part computes models of Π that
serve as answer set candidates. For each such model I, the checking part
then computes the fixpoint lfp(TfΠI (∅,¬I−)) for the FLP reduct fΠI ; if
I = lfp(TfΠI (∅,¬I−)), then I is a well-justified FLP answer set of Π.

The implementation realizes the guessing part by first transforming Π
into a normal logic program Π̂ without complex atoms (called the guessing
program). The result of this step will be sent to an ASP solver, which
computes the stable models of Π̂ under the standard answer set semantics.
These models are used as input to the checking part, which selects the well-
justified FLP answer sets as output.

38

Definition 14. Let Π be a normal logic program with complex atoms. The
guessing program of Π, denoted Π̂, is obtained from Π as follows. For each
complex atom A in Π, (1) replace A with a fresh atom EA, and (2) add two
new rules to Π, EA ← ¬E ′A and E ′A ← ¬EA, where E ′A is a fresh atom.

For convenience, in the above definition we call EA the replacement atom
of A, and call A the source complex atom of EA.

For an interpretation Î of Π̂, its projection I on Π is Î with all replacement
atoms EA along with E ′A removed. Observe that when Î is an answer set
of Π̂, I may not be an FLP or a well-justified FLP answer set of Π, and even
not be a model of Π. So we make use of the concept of compatible sets as
introduced by Eiter et al. (2012a).

Definition 15. Let Π be a normal logic program with complex atoms and Π̂
be its guessing program. Let Î be an answer set of Π̂ and I be its projection
on Π. We call Î a compatible set of Π, if for every replacement atom EA in
Π̂, EA ∈ Î if and only if I satisfies the source complex atom A of EA.

It is not hard to see that for every compatible set Î of Π, its projection I
on Π is a model of Π, and that the projections of all compatible sets include
all FLP answer sets of Π (see proof of Theorem 18), hence all well-justified
FLP answer sets of Π.

However, there may exist compatible sets whose projections are not FLP
answer sets. Therefore, we need to check whether the projection I of each
compatible set Î is an FLP resp. well-justified FLP answer set of Π. This
check amounts to verifying that I is a minimal model of the FLP reduct
fΠI in case of FLP answer sets (Eiter et al., 2012b); for well-justified FLP
answer sets, the checking part permits only candidates I that are equal to
lfp(TfΠI (∅,¬I−)).

Algorithm 1 summarizes the process of computing all well-justified FLP
answer sets using compatible sets.

Example 15. Consider the logic program Π1 from Example 1. In the guess-
ing part, we construct the following guessing program:

Π̂1 : p(1). r1

p(2)← p(−1). r2

p(−1)← ESUM 〈X:p(X)〉≥1. r3

ESUM 〈X:p(X)〉≥1 ← ¬E ′SUM 〈X:p(X)〉≥1. r4

E ′SUM 〈X:p(X)〉≥1 ← ¬ESUM 〈X:p(X)〉≥1. r5

39

Algorithm 1: Computing well-justified FLP answer sets

Input: A normal logic program with aggregates, a dl-program, or a
hex-program Π

Output: All well-justified FLP answer sets of Π

Construct the guessing program Π̂ from Π
AS = ∅
for each answer set Î of Π̂ do // check if Î is a compatible set

Let I be the projection of Î on Π
compatible := true

for each replacement atom EA in Π̂ do
Let A be the source complex atom of EA
if EA ∈ Î but I does not satisfy A, or EA 6∈ Î but I satisfies A
then

compatible := false

if compatible = true then

// Î is a compatible set; do fixpoint check

if I = lfp(TfΠI (∅,¬I−)) then
AS := AS ∪ {I}

return AS

The replacement atom ESUM 〈X:p(X)〉≥1 has been introduced for the aggregate

atom SUM〈X : p(X)〉 ≥ 1 occurring in Π1. The program Π̂1 has two answer
sets: Î1 = {p(1), E ′SUM 〈X:p(X)〉≥1} and Î2 = {p(1), ESUM 〈X:p(X)〉≥1, p(−1), p(2)}.
Their projections on Π1 are I1 = {p(1)} and I2 = {p(1), p(−1), p(2)}, of
which only Î2 is a compatible set of Π1; thus I2 is the only answer set candi-
date of Π1. The checking part then computes the fixpoint lfp(T

fΠ
I2
1

(∅,¬I−2)) =

{p(1)}; as it is different from I2, the latter is not a well-justified FLP answer
set of Π1. Consequently, Algorithm 1 outputs for Π1 no well-justified FLP
answer sets, which is the correct result.

The following result shows that Algorithm 1 correctly computes the well-
justified FLP answer set semantics.

Theorem 18. Assume all complex atoms in logic programs are decidable.
Then Algorithm 1 is sound and complete w.r.t. the well-justified FLP answer

40

Program Π Rewriter
Guessing

program Π̂

Compatibility
Checker

Answer
sets of Π̂

clasp

Compatible sets
Fixpoint
Iterator

Well-justified
FLP answer

sets of Π

Figure 1: System Architecture of dlvhex

set semantics for normal logic programs with aggregates, dl-programs and
hex-programs.

We implemented Algorithm 1 by extending our ASP reasoner dlvhex.6

The system architecture of dlvhex is depicted in Figure 1, which consists
of four major components:

• a rewriter, which constructs a guessing program Π̂ from a normal logic
program Π with complex atoms;

• a state-of-the-art ASP solver clasp,7 which computes answer sets of
Π̂;

• a compatibility checker, which identifies the compatible sets among the
answer sets of Π̂; and

• a fixpoint iterator, which for the projection I of each compatible set Î
computes the fixpoint lfp(TfΠI (∅,¬I−)).

dlvhex can also compute FLP answer sets, using the same architecture
except that the fixpoint iterator is replaced by a minimality checker, which
checks if I is a minimal model of the FLP reduct fΠI (Eiter et al., 2012b).

6dlvhex is available at http://www.kr.tuwien.ac.at/research/systems/dlvhex.
7Available at http://www.cs.uni-potsdam.de/clasp.

41

7.2. Experimental Evaluation

In Section 6, we show that the well-justified FLP answer set semantics
enhances the FLP answer set semantics with a level mapping formalism with-
out affecting the worst-case complexity. In this subsection, we present exper-
imental results which show that computing well-justified FLP answer sets is
faster than computing FLP answer sets on some benchmark programs. To
this end, we use hex-program encodings of several benchmark problems that
have been developed in other contexts such that the FLP answer sets corre-
spond to the solutions of the problems; as the well-justified FLP answer sets
are particular FLP answer sets, the latter yield particular solutions obtained
by a fixpoint construction that avoids a customary minimality check for a
model candidate under the FLP semantics, which usually is expensive. It
is thus interesting to see the effect of resorting to well-justified FLP answer
sets of the encodings if one is just interested in some solution (and less in the
additional quality of avoiding circularity).

For the evaluation we compared runtime under the FLP and under the
well-justified FLP semantics using three benchmark domains: Abstract Ar-
gumentation, Inconsistency Explanation for Multi-Context Systems, and Set
Partitioning, where A, M, and P denote the set of all instances, respec-
tively. The first and the second are motivated by applications in knowledge
representation and reasoning, while the third benchmark is synthetic. Each
benchmark instance i ∈ A ∪M∪ P has an associated parameter setting πi
and size |i|. We collect the total runtime tX(i), i.e., the time from startup
to termination, and the runtime per answer set pX(i), i.e., the total runtime
divided by the number of answer sets (which is only applicable if at least
one answer set exists) of our system under the FLP answer set semantics
(X = flp) and under the well-justified FLP answer set semantics (X = wj)
in seconds. We summarize for each benchmark B = A,M,P and instance
size s the outcome in tables with maximum and average factors tBmax(s),
pBmax(s), tBavg(s) and pBavg(s), which have been computed for op = max, avg
and runtime r = t, p as follows:

rBop(s) = op

{
rwj (i)

rflp(i)
| i ∈ B ∧ s = |i|

}
.

We call rBop(s) a speedup factor, if rBop(s) < 1 and a slowdown factor, if
rBop(s) > 1. For computing pBop(s) we consider only those instances which
have at least one answer set under both semantics. We evaluated the im-
plementation on a Linux server with two 12-core AMD 6176 SE CPUs with

42

128GB RAM. The runtimes are compared with a timeout of 300 seconds, and
each run has been limited to use at most 4GB main memory. Learning from
external sources (cf. Eiter et al. (2012a) for external behavior learning) is
an important optimization mechanism for improving the performance of an-
swer set computation. At the moment, however, it has been implemented in
dlvhex only for the FLP answer set semantics, not yet for the well-justified
FLP semantics. Thus we decided to turn this optimization mechanism off
for the benchmarks to ensure a fair comparison. If external behavior learn-
ing was enabled, due to the effect of optimization, the evaluation under the
FLP answer set semantics would be faster than under the well-justified FLP
semantics in all cases.8 The problem encodings have been developed for the
FLP semantics. The well-justified FLP semantics delivers a subset of the
FLP answer sets as an approximation therefore.

Abstract Argumentation. An abstract argumentation framework (AF)
(Dung, 1995) is a pair F = (A,R) of a set A of arguments and a relation
R ⊆ A×A that can be viewed as a directed graph, where the nodes represent
arguments and an arc a→ b represents that argument a attacks argument b.
The semantics of an AF is defined in terms of extensions, which are sets of ar-
guments that fulfill certain criteria, depending on the particular semantics in
use. As shown by Dung, a number of problems in artificial intelligence can be
elegantly encoded as reasoning tasks on abstract argumentation frameworks.

In this benchmark, which was considered earlier in (Eiter et al., 2012b),
we consider computing ideal sets (Dung et al., 2007), which serve to refine
the seminal semantics in (Dung, 1995). A set I of arguments is an ideal
set of an AF F = (A,R) if I is an admissible set that is contained in all
preferred extensions, i.e., subset-maximal admissible set of F , where a set S
of arguments is admissible if S does not contain self attacks, i.e., there are
no arcs between nodes in S, and each argument attacking some argument
in S is attacked by some argument in S, i.e., if an arc leads from a node
a into S then an arc leads from some node in S to a. For example, if
F = ({a, b, c}, {(a, b), (b, a)}), then ∅, {c}, {a, c}, and {b, c} are the admissible
sets and thus {a, c}, {b, c} the preferred extensions; hence, ∅ and {c} are the
ideal sets. For further discussion and use of ideal sets, we refer to (Dung
et al., 2007; Bench-Capon and Dunne, 2007).

8All benchmark encodings, instances and results are available at http://www.kr.

tuwien.ac.at/staff/redl/wjflp.

43

Table 3: Argumentation Benchmark Results (time for well-justified FLP over ordinary
FLP answer sets; speedup if < 1, slowdown if > 1)

Slower Faster
n tAavg(n) tAmax(n) Instances Instances pAavg(n) pAmax(n)

5 0.87 0.65 34.00% 66.00% 11.11 20.00
6 0.65 0.42 10.00% 90.00% 14.29 25.00
7 0.44 0.22 2.00% 98.00% 14.29 25.00
8 0.29 0.15 2.00% 98.00% 11.11 25.00
9 0.25 0.13 0.00% 100.00% 5.56 10.00

10 0.46 0.20 0.00% 74.00% 1.72 9.09

The hex-program encoding uses an external atom that allows to verify
whether a given set T of arguments is a preferred extension of the input AF
F ; a guess for an ideal set I is then verified using this atom and a customary
saturation technique to ensure that no preferred extension T exists such that
I 6⊆ T . The FLP answer sets of the encoding correspond one-to-one to the
ideal extensions of F .9

Each argumentation framework F = (A,R) in our benchmark set A con-
sists of n = |A| arguments, and R consists of edges independently chosen
from A × A with probability p. For each parameter setting (n, p), where
n = 5, . . . , 10 and p ∈ {0.03, 0.05, 0.07, 0.09, 0.11}, we have created ten in-
stances F (n, p, 1), . . . , F (n, p, 10); the size of each instance F is n = |A|.

Table 3 summarizes the results grouped by the number n of arguments.
We also report the percentage of the instances within each group of n ar-
guments that are faster resp. slower under the well-justified FLP semantics
compared to the FLP semantics. For the remaining instances, we either
could not observe a speedup or slowdown, or the runs timed out under both
semantics. We see that if we measure the total runtime for an instance, then
the evaluation under the well-justified FLP semantics is more efficient than
under the FLP semantics for a majority of instances.

Eiter et al. (2012b) note that the minimality check for model candidates
under the FLP semantics is costly for this benchmark problem. In contrast,

9See http://www.kr.tuwien.ac.at/staff/redl/wjflp. We note that the (unique)
subset-maximal ideal set, the ideal extension, can be obtained using a further optimization
constraint or using a more involved encoding.

44

the fixpoint iteration under the well-justified FLP semantics seems to be
rather cheap. Our explanation for this effect is that many atoms in this
benchmark domain can be computed deterministically by exploiting the pro-
gram structure. Thus, checking satisfaction of external atoms under partial
assignments is efficient for such instances, even though the worst case would
require to make exponentially many calls until the fixpoint has been reached.
On the other hand, the minimality check of the FLP reduct under the FLP
semantics remains exponential.

If we measure the runtime per answer set as defined above, the picture
is different. In this case the evaluation under the FLP answer set semantics
is more efficient, as there is a large number of FLP answer sets that are not
well-justified FLP answer sets (for most instances, only one FLP answer set
is well-justified). Thus, the FLP semantics requires to compute far more
models, but with only slightly longer total runtime, which leads to a better
average runtime.

Inconsistency Explanation for Multi-Context Systems. Nonmono-
tonic Multi-Context-Systems (MCSs) were proposed in (Brewka and Eiter,
2007) as a generic formalism for aligning knowledge bases called contexts,
which emerged by an evolution of formalisms rooted in (Ghidini and Giunchiglia,
2001). An MCS is a collection M = (C1, . . . , Cn) of contexts Ci, each of which
holds a knowledge base kbi in some logic Li whose semantics is given in terms
of abstract acceptable belief sets (which usally are sets of formulas, or mod-
els). The contexts are interlinked via so called bridge rules, which enable be-
lief exchange across contexts; for example, a bridge rule br : (1:a)← not (2:b)
informally says that a should be in C1’s knowledge base, if b is not in the
local belief set of context C2. The semantics of an MCS is defined in terms of
equilibria, which are belief states S = (S1, . . . , Sn) composed of local belief
sets Si of the knowledge bases kbi satisfying the bridge rules.

However, compliance of the bridge rules with the knowledge bases may
be impossible to achieve; that is, the MCS is inconsistent (even if the lo-
cal knowledge bases are consistent). For example, if M = (C1, C2) where
kb1 = {⊥ ← a} and kb2 = {c} are both ASP programs and there is the
single bridge rule br from above, then M has no equilibrium, although both
kb1 and kb2 have an answer set (where answer sets are acceptable belief sets).
To understand the reasons for inconsistency, Eiter et al. (2012c) introduced
the notion of an inconsistency explanation (IE) for an MCS M , which aims
at characterizing an inconsistency core through bridge rules, i.e., faulty in-

45

terlinkage. Roughly speaking, an IE consists of bridge rules whose presence
or inapplicability will necessarily entails inconsistency; the technical defini-
tion is involved, and we thus refrain from detailing it here. In the example
above, the presence of the single bridge rule br entails inconsistency, and
hence amounts to an IE. For further background and discussion of MCS and
applications, we refer to (Brewka and Eiter, 2007; Brewka et al., 2011a; Eiter
et al., 2012c).

This benchmark set computes IEs, which correspond one-to-one to the
FLP answer sets of an hex-encoding of the problem. The encoding10 as cy-
cles through external atoms which intuitively evaluate the semantics of the
context knowledge bases. We used the MCS benchmark instances generated
for (Eiter et al., 2011). These random instances are grouped into consis-
tent and inconsistent instances, and the contexts are interlinked with various
fixed topologies that should resemble different scenarios: ordinary and zig-
zag diamond stack, house stack, ring, and binary tree. A diamond stack
combines multiple diamonds in a row (stacking m diamonds in a tower of
3m+ 1 contexts). Ordinary diamonds have, in contrast to zig-zag diamonds,
no connection between the two middle contexts. A house consists of five
nodes with six edges (the ridge context has directed edges to the two middle
contexts, which form with the two base contexts a cycle with 4 edges); house
stacks are subsequently built up by using the basement nodes as ridges for
the next houses (thus, m houses have 4m + 1 contexts). Binary trees grow
balanced, i.e., every level is complete except for the last level, which grows
from the left-most context.

A parameter setting (c, s, b, r) for an instance M = (C1, . . . , Cc) from M
specifies (i) the number c of contexts, (ii) the local alphabet size |Σi| = s
(each Ci has a random ASP program on s atoms with 2k answer sets, 0 ≤
k ≤ s/2), (iii) the maximum interface size b (number of atoms exported),
and (iv) the maximum number r of bridge rules per context, each having
≤ 2 body literals. The benchmark set consists of instances with c = 3, . . . , 9
contexts, each |Σi| = 2, b = 1, and r = 2. The instances have been created
with the benchmark generator for DMCS (Dao-Tran et al., 2010), which is
available from the benchmark homepage.

Table 4 summarizes the results grouped by the number of contexts c. We
report the results only up to size 9 because all greater instances timeout

10See http://www.kr.tuwien.ac.at/staff/redl/wjflp or Eiter et al. (2012c).

46

Table 4: Multi-Context Systems Benchmark Results (time for well-justified FLP over
ordinary FLP answer sets; speedup if < 1, slowdown if > 1)

Slower Faster
c tMavg(c) tMmax(c) Instances Instances pMavg(c) pMmax(c)

3 0.86 0.56 6.67% 93.33% 0.89 0.85
4 0.79 0.55 8.33% 87.50% 0.68 0.55
5 0.96 0.74 10.53% 47.37% 0.85 0.74
6 0.67 0.31 0.00% 62.50% 0.53 0.40
7 0.60 0.25 7.14% 32.14% 0.30 0.25
8 0.86 0.42 9.09% 18.18% 0.23 0.23
9 0.84 0.28 0.00% 9.09% 0.24 0.24

under both semantics. We also report the percentage of the instances within
each group of c contexts that are faster resp. slower under the well-justified
FLP semantics compared to the FLP semantics. For the remaining instances,
we either could not observe a speedup or slowdown, or the runs timed out
under both semantics.

As for the argumentation benchmarks, evaluation under the well-justified
FLP semantics is mostly faster than under the FLP semantics if we measure
the total runtime, but the speedup is smaller in this case. This is because the
program structure does not allow for deriving as many literals deterministi-
cally as in the argumentation benchmark. This makes the fixpoint iteration
more complex, as checking satisfaction of an external atom under a partial
interpretation requires to consider all its possible completions.

Unlike in our argumentation benchmark, also the average runtime per an-
swer set is for the well-justified semantics smaller than for the FLP semantics.
This is because in this benchmark most FLP answer sets are well-justified
and the two semantics yield the same set of models in many cases. The
better total runtime for the well-justified FLP semantics thus carries over to
the average case.

47

Set Partitioning. This benchmark uses the following hex-program:

sel(X)← domain(X),&diff [domain, nsel](X)

nsel(X)← domain(X),&diff [domain, sel](X)

← sel(X), sel(Y), sel(Z), X 6=Y,X 6=Z, Y 6=Z

domain(1 ..N)←

where &diff [p, q](X) computes the set of all elements X which are in the
extension of p but not in the extension of q. It computes in its FLP answer
sets all partitionings of a set into two (possibly empty) partitions where the
first has size at most two, using an external atom for computing the set
difference. In fact, each of the FLP answer sets is well-justified, and thus
the two semantics coincide; this is because the derivation of any atom in an
FLP answer set does not rely on other atoms except facts. Thus, fixpoint
iteration can reproduce the answer set already in the first iteration.

The evaluation results are shown in Table 5. Note that we do not
group benchmark instances in this case, thus the average and maximum
speedup/slowdown is the same for each row. In this benchmark the com-
putation under the well-justified FLP semantics is always faster than under
the FLP semantics. This is because the constraints of kind ¬sel(x) (resp.
¬nsel(x)) are added right at the beginning of the fixpoint iteration for all
atoms which are not in the compatible set. This makes the corresponding
atom &diff [domain, sel](x) (resp. &diff [domain, nsel](x)) immediately sat-
isfied in the first iteration. Thus, the fixpoint iteration always terminates
after the first iteration, while the necessary minimality check for the FLP
semantics is exponential. All FLP answer sets of this program are also well-
justified FLP answer sets, thus the picture does not change if we measure
the average runtime per answer set. For c > 12 the results do not change
anymore.

8. Related Work

The FLP answer set semantics, in the spirit of minimal models of FLP
reducts, was first introduced in (Faber et al., 2004, 2011) for normal and
disjunctive logic programs with aggregates. This method of defining answer
sets has further been applied to description logic programs and hex-programs
(Eiter et al., 2005, 2008), tightly coupled dl-programs (Lukasiewicz, 2010),
modular logic programs (Dao-Tran et al., 2009), etc. Since FLP reducts

48

Table 5: Set Partitioning Benchmark Results (time for well-justified FLP over ordinary
FLP answer sets; speedup if < 1, slowdown if > 1)

Slower Faster
c tPavg(c) = tPmax(c) Instances Instances pPavg(c) = pPmax(c)

1 0.67 0.00% 100.00% 0.67
2 0.73 0.00% 100.00% 0.74
3 0.67 0.00% 100.00% 0.67
4 0.24 0.00% 100.00% 0.24
5 0.07 0.00% 100.00% 0.07
6 0.02 0.00% 100.00% 0.02
7 0.02 0.00% 100.00% < 0.005
8 0.04 0.00% 100.00% < 0.005
9 0.10 0.00% 100.00% < 0.005

10 0.24 0.00% 100.00% < 0.005
11 0.56 0.00% 100.00% 0.01
12 1.00 0.00% 0.00% 1.00

are treated as classical implications instead of rules, such FLP answer sets
suffer from possible circular justifications (see Examples 1 and 13; Shen and
Wang (2011, 2012) illustrated the circular justification problem with the FLP
answer set semantics of Lukasiewicz (2010)).

For logic programs with first-order formulas, Bartholomew et al. (2011)
reformulated the FLP answer set semantics of Definition 2 in terms of a mod-
ified form of circumscription. Unlike Definition 2, this reformulation refers
to no program grounding and employs no SNA assumption. As shown in Ex-
ample 2, this FLP answer set semantics suffers from the circular justification
problem.

Ferraris (2005) defined answer sets for logic programs with propositional
formulas and aggregates based on a new definition of equilibrium logic (Pearce,
1996). Ferraris et al. (2011) further extended this answer set semantics to
first-order formulas in terms of a modified circumscription. Pearce (2006)
proposed to identify answer sets with equilibrium models in equilibrium logic.
de Bruijn et al. (2010) further applied the semantics of Pearce (2006) to inte-
grate rules and ontologies for the Semantic Web, and Lee and Palla (2011) the
semantics of Ferraris et al. (2011). It turns out that the answer set semantics
of Pearce (2006) coincides with that of Ferraris (2005) in the propositional

49

case and with that of Ferraris et al. (2011) in the first-order case. All of the
three semantics agree with the FLP answer set semantics of (Faber et al.,
2004, 2011) for normal and disjunctive logic programs with aggregates. We
observe that these answer set semantics also suffer from circular justifica-
tions. As an example, for the propositional logic program Π = {p ← ¬¬p},
I = {p} is neither a well-justified FLP answer set nor an FLP answer set
(Definition 2); however, I is an answer set under the semantics of Ferraris
(2005), Ferraris et al. (2011) and Pearce (2006). This answer set has a cir-
cular justification caused by the self-supporting loop p ⇐ ¬¬p ⇐ p, i.e. p
being in I is due to I satisfying ¬¬p, which in turn is due to p being in I.

The well-justified FLP answer set semantics inherits the anti-chain prop-
erty of the FLP answer set semantics, i.e. no well-justified FLP answer set
is a proper subset of another well-justified FLP answer set (see Theorem 3);
in contrast, none of the semantics of Ferraris (2005), Ferraris et al. (2011)
and Pearce (2006) has this property. As an alternative, Pearce (2006) further
proposed to use only minimal equilibrium models to define answer sets (see
Section 6.1 of Pearce (2006)). However, it turns out that applying the min-
imization method does not overcome the circular justification problem. To
illustrate, consider the propositional logic program Π = {p← ¬¬p, p← ¬p}.
I = {p} is not an FLP answer set of Π, but it is a minimal equilibrium model
and thus is an answer set under the semantics of Pearce (2006), Ferraris
(2005) and Ferraris et al. (2011). This answer set has a circular justification
p⇐ ¬¬p⇐ p.

The above examples show that an answer set of Ferraris (2005), Ferraris
et al. (2011) and Pearce (2006) is not necessarily an FLP or a well-justified
FLP answer set; the following example illustrates that also the converse
direction fails. Consider the propositional logic program Π = {p← p ∨ ¬p}.
Since p ∨ ¬p is a tautology in classical logic, I = {p} is both an FLP and a
well-justified FLP answer set of Π. However, under the semantics of Pearce
(2006), Ferraris (2005) and Ferraris et al. (2011), Π is strongly equivalent to
the normal logic program Π′ = {p ← p, p ← ¬p}, thus I = {p} is not an
answer set of these semantics.

Truszczyński (2010) defined an answer set semantics for logic programs
with propositional formulas by introducing a different program transforma-
tion called FLPT reducts, which agrees with the FLP answer set semantics
of (Faber et al., 2004, 2011) for normal and disjunctive logic programs. Such
answer sets may also have circular justifications. For instance, the interpreta-
tion I = {p(1), p(−1)} of Π2 in Example 2, which has circular justifications,

50

is an answer set under the semantics of Truszczyński (2010). Moreover, this
semantics does not share the anti-chain property of the FLP answer set se-
mantics. Hence, answer sets of Truszczyński (2010) are neither FLP answer
sets nor well-justified FLP answer sets in general. The following example
(borrowed from Bartholomew et al. (2011)) disproves a converse inclusion.
For Π = {¬¬p, p ∨ ¬p ← ¬¬p}, we have that I = {p} is both an FLP and
a well-justified FLP answer set of Π, but I is not an answer set under the
semantics of Truszczyński (2010).

For a logic program Π whose rule heads are atoms, in (Denecker et al.,
2001; Pelov et al., 2007) a three-valued fixpoint semantics was introduced
based on a three-valued operator ΦΠ. This fixpoint semantics defines answer
sets, called two-valued stable models, which are free of circular justifications.
As discussed in Section 4.1, there are at least three significant differences be-
tween the three-valued fixpoint semantics and the well-justified FLP answer
set semantics. That is, the former is defined over three-valued interpreta-
tions, while the latter is defined over two-valued interpretations; the former
is applicable only to logic programs whose rule heads are atoms, while the
latter applies to logic programs whose rule heads are arbitrary first-order for-
mulas; and as shown by Theorem 5, the former is more conservative than the
latter in the sense that two-valued stable models of the three-valued fixpoint
semantics are well-justified FLP answer sets, which by Corollary 2 are also
FLP answer sets, but the converse does not hold.

For normal logic programs with c-atoms or positive basic logic programs,
in (Son et al., 2007; Son and Pontelli, 2007) it was shown that the conditional
satisfaction-based answer set semantics agrees with the three-valued fixpoint
semantics of (Denecker et al., 2001; Pelov et al., 2007). By Theorem 6, for
such logic programs the well-justified FLP answer set semantics also agrees
with the three-valued fixpoint semantics. Shen and You (2007) gave an al-
ternative characterization of the conditional satisfaction-based semantics in
terms of a generalized Gelfond-Lifschitz transformation. Liu et al. (2010) pro-
posed a computation-based answer set semantics for normal logic programs
with c-atoms, which proves to coincide with the conditional satisfaction-based
semantics.

9. Summary and Future Work

The FLP answer set semantics (Faber et al., 2004, 2011) has been widely
used to define answer sets for different types of logic programs. However,

51

when being extended from normal logic programs to more general classes of
logic programs, the FLP answer set semantics suffers from circular justifica-
tions. The intuitive reason behind the circular justification problem is that
the FLP answer set semantics does not induce a level mapping for its answer
sets. In this paper, we have overcome this shortcoming by enhancing the
FLP answer set semantics with a suitable level mapping.

Inspired by the fact that each answer set I of an ordinary normal logic
program Π has a level mapping that is induced by the fixpoint construction
of I using the van Emden-Kowalski one-step provability operator TΠI (S) for
the Gelfond-Lifschitz reduct ΠI , we define the well-justified FLP answer sets
I of Π as fixpoints that are obtained by iteratively applying an extended van
Emden-Kowalski operator TfΠI (O,N) for the FLP reduct fΠI ; such FLP
answer sets always have a level mapping and are thus free of circular justifi-
cations. As a generic approach, the well-justified answer set semantics applies
to logic programs with first-order formulas, logic programs with aggregates or
c-atoms, and description logic programs. It can easily be extended to other
well-known types of logic programs, such as hex-programs, tighly coupled
dl-programs and modular logic programs, by a suitable adjustment of the
satisfaction relation. To the best of our knowledge, the answer set semantics
presented here is the first that is free of circular justifications for such general
kinds of logic programs.

We have studied in depth the computational complexity of the FLP and
the well-justified FLP answer set semantics for general logic programs. For
the major reasoning tasks, the FLP and the well-justified FLP answer set
semantics fall in the same complexity classes. This means that the well-
justified FLP answer set semantics enhances the FLP answer set semantics
with a level mapping formalism without affecting the worst-case complexity.

We have implemented the well-justified FLP answer set semantics by
extending the ASP reasoner dlvhex, which currently can compute well-
justified FLP answer sets for normal logic programs with aggregates, dl-
programs and hex-programs. We also conducted an experimental evaluation,
which shows on benchmark problems the potential of the well-justified FLP
answer set semantics in two respects: it not only employs a stronger notion
of foundedness than the FLP answer set semantics, but it is also faster to
compute (due to its fixpoint design, which is beneficial for answer set check-
ing). For finding some FLP answer set, it thus seems attractive to start the
search with finding a well-justified FLP answer set.

52

Open issues. We focused in this article on logic programs with rules of
the form H ← B, where H and B are first-order formulas, possibly with
aggregates and/or dl-atoms. Such logic programs do not cover disjunctive
logic programs introduced in (Gelfond and Lifschitz, 1991), which consist of
rules of the form A1 | · · · |Al ← B1 ∧ · · · ∧ Bm ∧ ¬C1 ∧ · · · ∧ ¬Cn, where
each Ai, Bi and Ci is an atom, and | is an epistemic disjunction operator
that is different from the classical disjunction connective ∨ (see (Ferraris and
Lifschitz, 2005) for their differences). As future work, it is interesting to
extend the well-justified FLP answer set semantics to logic programs with
rules of the form H1 | · · · |Hl ← B, where B and each Hi are first-order
formulas. In connection with this, it remains to deploy well-justified answer
sets to further classes of logic programs.

On the computational side, a study of the decidability and computational
complexity of first-order logic programs with formulas from various decidable
fragments of first-order logic, under different notions of answer sets (including
well-justified FLP answer sets) is an interesting issue. Moreover, to develop
methods for further improving the efficiency of the current implementation
of the well-justified FLP answer set semantics is a challenging task.

10. Appendix: Proofs

Proof of Lemma 1. We prove the claim by induction on i ≥ 0. It clearly
holds for i= 0. For the induction step, assume that I is a model of T iΠ(∅,¬I−);
we prove that I is then also a model of T i+1

Π (∅,¬I−).
Let S = T i+1

Π (∅,¬I−) \ T iΠ(∅,¬I−). For each formula H ∈ S, there is a
rule r ∈ ground(Π) with head(r) = H such that T iΠ(∅,¬I−)∪¬I− |= body(r).
By the induction hypothesis, I is a model of T iΠ(∅,¬I−)∪¬I−, so I is a model
of body(r). Since I is a model of Π, I is a model of r and thus is a model of
H. This shows that I is a model of S, hence a model of T i+1

Π (∅,¬I−). �

Proof of Theorem 1. We show that for every r ∈ ground(Π) \ fΠI and
i ≥ 0, it holds that T iΠ(∅,¬I−) ∪ ¬I− 6|= body(r); hence T iΠ(∅,¬I−) =
T ifΠI (∅,¬I−) for all i ≥ 0, which proves the result. Assume towards a con-

tradiction that T iΠ(∅,¬I−) ∪ ¬I− |= body(r). As by Lemma 1, I is a model
of T iΠ(∅,¬I−) ∪ ¬I−, it follows that I satisfies body(r). However, this means
r ∈ fΠI , which is a contradiction. �

53

Proof of Theorem 2. We prove it by induction on i ≥ 0. It is trivial
for i = 0. As induction step, assume that for some integer n, T nΠI (∅) =
T nΠ(∅,¬I−). We next show that this claim holds for n+ 1.

For any rule r ∈ ΠI such that body(r) is satisfied by T nΠI (∅), by definition
of ΠI there must be a rule r′ ∈ ground(Π) such that head(r) = head(r′) and
body(r) is body(r′) with all negative literals in ¬I− removed. This means
all positive literals of body(r′) are in T nΠI (∅) and all negative literals are in
¬I−. By the induction hypothesis, T nΠ(∅,¬I−)∪¬I− |= body(r′). This shows
T n+1

ΠI (∅) ⊆ T n+1
Π (∅,¬I−). Conversely, let r′ ∈ ground(Π) be a rule such that

T nΠ(∅,¬I−) ∪ ¬I− |= body(r′). Since I is a model of Π, by Lemma 1, I is
a model of T nΠ(∅,¬I−) ∪ ¬I− and thus I satisfies body(r′). This means (1)
T nΠ(∅,¬I−) ⊆ I; (2) there is a rule r ∈ ΠI such that head(r) = head(r′)
and body(r) is body(r′) with all negative literals removed; and (3) body(r) is
satisfied by T nΠ(∅,¬I−). By the induction hypothesis, body(r) is satisfied by
T nΠI (∅). This shows T n+1

Π (∅,¬I−) ⊆ T n+1
ΠI (∅); hence T n+1

Π (∅,¬I−) = T n+1
ΠI (∅).

Consequently, for any i ≥ 0 T iΠI (∅) = T iΠ(∅,¬I−) and thus lfp(TΠI (∅)) =
lfp(TΠ(∅,¬I−)). �

Proof of Theorem 3. Let I be an answer set of a logic program Π, and
assume, on the contrary, that J ⊂ I is a minimal model of Π. Then,
¬I− ⊂ ¬J−. Since the entailment relation |= is monotone, for any i ≥ 0,
T iΠ(∅,¬I−) ⊆ T iΠ(∅,¬J−) and thus lfp(TΠ(∅,¬I−)) ⊆ lfp(TΠ(∅,¬J−)). By
Theorem 1, lfp(TfΠI (∅,¬I−)) ⊆ lfp(TfΠJ (∅,¬J−)). Since I is an answer set,
for each A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A and thus lfp(TfΠJ (∅,¬J−)) ∪
¬J− |= A. Since I ∩ J− 6= ∅, this implies lfp(TfΠJ (∅,¬J−)) ∪ ¬J− is incon-
sistent. This contradicts Lemma 1 that J is a model of lfp(TfΠJ (∅,¬J−)).
We then conclude that I is a minimal model of Π.

For the second part, assume, on the contrary, that J ⊂ I is a mini-
mal model of fΠI . Then, lfp(TfΠI (∅,¬I−)) ⊆ lfp(TfΠI (∅,¬J−)). Since I
is an answer set, for each A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A and thus
lfp(TfΠI (∅,¬J−))∪¬J− |= A. Since I∩J− 6= ∅, this implies lfp(TfΠI (∅,¬J−))∪
¬J− is inconsistent. This contradicts Lemma 1 that J is a model of lfp(TfΠI (∅,
¬J−)). We then conclude that I is a minimal model of fΠI . �

Proof of Theorem 4. By Theorem 3, when I is a well-justified FLP an-
swer set of Π, I is a minimal model of Π.

Conversely, assume that I is a minimal model of Π. Then for each A ∈ I,
ground(Π)∪¬I− |= A. Since all rule bodies in Π are empty, lfp(TΠ(∅,¬I−)) =

54

ground(Π) and by Theorem 1, lfp(TfΠI (∅,¬I−)) = ground(Π). This means
that for each A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A. By Definition 6, I is
a well-justified FLP answer set of Π. This establishes the first equivalence.
From this and since every well-justified FLP answer of an arbitrary logic
program Π is an FLP answer of Π (Corollary 2) and every FLP answer set of
Π as a minimal model of fΠI also must be a minimal model of Π, the second
equivalence follows. �

To prove Theorem 5, we introduce the following lemma.

Lemma 3. Let Î = (I1, I2) be a three-valued interpretation of a propositional
logic program Π and F be a propositional formula. If Î(F) = t, then I1 ∪
¬I−2 |= F ; if Î(F) = f , then I1 ∪ ¬I−2 |= ¬F .

Proof. Note that I−2 = HBΠ \ I2; so for any atom p ∈ I−2 , Î(p) = f . We
prove this lemma by induction on the logical connectives ∧,∨,¬.

Induction base: Let p be an propositional atom. If Î(p) = t, then p ∈ I1

and thus I1 ∪ ¬I−2 |= p. If Î(p) = f , then p ∈ I−2 and thus I1 ∪ ¬I−2 |= ¬p.
Induction hypothesis: Assume that φ and ψ are two arbitrary proposi-

tional formulas that satisfy the conditions of Lemma 3. We next prove that
the formulas φ ∧ ψ, φ ∨ ψ and ¬φ also satisfy the conditions.

Induction step:
∧: If Î(φ∧ψ) = t, then Î(φ) = t and Î(ψ) = t. By induction hypothesis,

I1 ∪ ¬I−2 |= φ and I1 ∪ ¬I−2 |= ψ. Thus, I1 ∪ ¬I−2 |= φ ∧ ψ. If Î(φ ∧ ψ) = f ,
then Î(φ) = f or Î(ψ) = f . By induction hypothesis, I1 ∪ ¬I−2 |= ¬φ or
I1 ∪ ¬I−2 |= ¬ψ. This means I1 ∪ ¬I−2 |= ¬φ ∨ ¬ψ, i.e. I1 ∪ ¬I−2 |= ¬(φ ∧ ψ).
∨: If Î(φ ∨ ψ) = t, then Î(φ) = t or Î(ψ) = t. By induction hypothesis,

I1 ∪ ¬I−2 |= φ or I1 ∪ ¬I−2 |= ψ, i.e. I1 ∪ ¬I−2 |= φ ∨ ψ. If Î(φ ∨ ψ) = f ,
then Î(φ) = f and Î(ψ) = f . By induction hypothesis, I1 ∪ ¬I−2 |= ¬φ and
I1 ∪ ¬I−2 |= ¬ψ, i.e. I1 ∪ ¬I−2 |= ¬φ ∧ ¬ψ. Thus I1 ∪ ¬I−2 |= ¬(φ ∨ ψ).
¬: If Î(¬φ) = t, then Î(φ) = f . By induction hypothesis, I1∪¬I−2 |= ¬φ.

If Î(¬φ) = f , then Î(φ) = t. By induction hypothesis, I1 ∪ ¬I−2 |= φ. �

Proof of Theorem 5. Let Î = (I, I) be a three-valued interpretation of
Π. Since I is a two-valued stable model of Π, we have lfp(StΦ(I, I)) = (I, I).
Then there is an iteration sequence of the operator ΦΠ w.r.t. Î:

x0 = ∅, x1 = Φ1
Π(x0, I), · · · , xi+1 = Φ1

Π(xi, I), · · · , xα = I

55

where xα = I is the fixpoint St↓Φ(I). Consider the following iteration sequence
of the extended van Emden-Kowalski operator TΠ w.r.t. I:

y0 = ∅, y1 = TΠ(y0,¬I−), · · · , yi+1 = TΠ(yi,¬I−), · · · , yβ = lfp(TΠ(∅,¬I−))

where yβ = lfp(TΠ(∅,¬I−)) is the fixpoint. We next prove by induction that
for any i ≥ 0, xi ⊆ yi.

As induction base, for i = 0, x0 ⊆ y0. As induction hypothesis, assume
that for some i ≥ 0, xi ⊆ yi. We next prove xi+1 ⊆ yi+1.

Let Ĵ = (xi, I) be a three-valued interpretation. We have

xi+1 = Φ1
Π(xi, I) = {head(r) | r ∈ Π and Ĵ(body(r)) = t}, and

yi+1 = TΠ(yi,¬I−) = {head(r) | r ∈ Π and yi ∪ ¬I− |= body(r)}.

By Lemma 3, Ĵ(body(r)) = t implies xi ∪ ¬I− |= body(r). By induction
hypothesis that xi ⊆ yi, then yi ∪ ¬I− |= body(r). This shows that every
head(r) in xi+1 is in yi+1, i.e. xi+1 ⊆ yi+1. This means xα ⊆ yβ and thus
I ⊆ lfp(TΠ(∅,¬I−)).

Since I is a model of Π, by Lemma 1 the sequence y0, y1, · · · , yi, · · · will
not exceed I, i.e., lfp(TΠ(∅,¬I−)) ⊆ I. Consequently, lfp(TΠ(∅,¬I−)) = I
and by Theorem 1, lfp(TfΠI (∅,¬I−)) = I. Thus I is a well-justified FLP
answer set of Π. �

Proof of Lemma 2. Let A = (V,C). R |=I A if and only if for every F
with R ∩ V ⊆ F ⊆ I ∩ V , F ∈ C if and only if for every F with R ∩ V ⊆
F ⊆ I ∩ V , F satisfies A if and only if R ∪ ¬I− |= A. �

Proof of Theorem 6. Let I be a model of a positive basic logic program
Π. By Lemma 2, for any R ⊆ I and any rule r ∈ Π, R |=I body(r) if and only
if R ∪ ¬I− |= body(r). This means for any i ≥ 0, T iΠ(∅,¬I−) = ΓiΠ(∅, I) and
thus lfp(TΠ(∅,¬I−)) = lfp(ΓΠ(∅, I)). By Theorem 1, lfp(TfΠI (∅,¬I−)) =
lfp(ΓΠ(∅, I)). Since Π is a positive basic logic program, lfp(TfΠI (∅,¬I−))
consists of ground atoms. Since I is a model of Π, by Lemma 1 I is a
model of lfp(TΠ(∅,¬I−)) and thus a model of lfp(TfΠI (∅,¬I−)). This means
lfp(TfΠI (∅,¬I−)) is disjoint from I−. Therefore, I is a well-justified FLP
answer set of Π if and only if for each A ∈ I, lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= A
if and only if for each A ∈ I, A ∈ lfp(TfΠI (∅,¬I−)) if and only if I =
lfp(TfΠI (∅,¬I−)) if and only if I = lfp(ΓΠ(∅, I)) if and only if I is a condi-
tional satisfaction-based answer set of Π. �

56

Proof of Theorem 7. By Corollary 2, a well-justified FLP answer set for
a dl-program is an FLP answer set. Eiter et al. (2008) have shown that a
strong answer set is a weak answer set.

Let I be an FLP answer set of a dl-program Π relative to a DL knowledge
base L. Then, I is a minimal model of the FLP reduct fΠI

L. Consider the
reduct sΠI

L, which is fΠI
L with all negative literals and all nonmonotonic

dl-atoms removed. Assume, on the contrary, that I is not a strong answer
set of Π; i.e., I is not the least model of sΠI

L. Let J ⊂ I be the least model of
sΠI

L. Then, fΠI
L is inconsistent in J ; i.e., there is a rule r in fΠI

L such that
J satisfies body(r) but head(r) is not in J . In this case, there must be a rule
r′ in sΠI

L, which is r with all negative literals and all nonmonotonic dl-atoms
in body(r) removed. Since J satisfies body(r), J satisfies body(r′) and thus
head(r′) is in J . Since head(r) = head(r′), head(r) is in J , a contradiction.
This shows that I is a strong answer set of Π. Hence, we conclude that an
FLP answer set is a strong answer set. �

Proof of Theorem 8. By Theorem 7 it suffices to show that when Π
contains no nonmonotonic dl-atoms, if I is a strong answer set then I is a
well-justified FLP answer set.

Let I be a strong answer set of Π relative to L. I is the least model
of the reduct sΠI

L. Since sΠI
L is a positive dl-program, the least model I

can be computed from sΠI
L by applying the van Emden-Kowalski one-step

provability operator TP (S) via the sequence 〈T i
sΠI

L
(∅)〉∞i=0, where T 0

sΠI
L
(∅) = ∅

and for i ≥ 0 T i+1
sΠI

L
(∅) = TsΠI

L
(T i

sΠI
L
(∅)). That is, I is equal to the fixpoint

lfp(TsΠI
L
(∅)). We next show that the least model I can also be computed

from the FLP reduct fΠI
L via the sequence 〈T i

fΠI
L
(∅,¬I−)〉∞i=0. That is, I is

equal to the fixpoint lfp(TfΠI
L
(∅,¬I−)).

We show by induction that for all i ≥ 0, T i
sΠI

L
(∅) = T i

fΠI
L
(∅,¬I−). When

i = 0, T 0
sΠI

L
(∅) = T 0

fΠI
L
(∅,¬I−) = ∅. As induction hypothesis, assume that

for some integer n, T n
sΠI

L
(∅) = T n

fΠI
L
(∅,¬I−). Next we show T n+1

sΠI
L

(∅) =

T n+1
fΠI

L
(∅,¬I−).

Since I is a model of Π, by Theorems 1 and 2 and Lemma 1, for any
i ≥ 0, T i

sΠI
L
(∅) ⊆ I and T i

fΠI
L
(∅,¬I−) ⊆ I.

By definition, T n+1
sΠI

L
(∅) = TsΠI

L
(T n

sΠI
L
(∅)) = {head(r) | r ∈ sΠI

L such that

body(r) is satisfied by T n
sΠI

L
(∅)}, and T n+1

fΠI
L

(∅,¬I−) = {head(r′) | r′ ∈ fΠI
L

57

such that T n
fΠI

L
(∅,¬I−) ∪ ¬I− |= body(r′)}. Note that sΠI

L has a rule r

if and only if fΠI
L has a rule r′, where head(r) = head(r′) and body(r) is

obtained from body(r′) by deleting all negative literals and all nonmonotonic
dl-atoms. Since Π contains no nonmonotonic dl-atoms, for simplicity let
body(r′) = body(r) ∧ ¬A ∧ ¬B, where A is a ground monotonic dl-atom and
B is a ground atom.

Assume head(r′) ∈ T n+1
fΠI

L
(∅), due to T n

fΠI
L
(∅,¬I−) ∪ ¬I− |= body(r′).

Then, T n
fΠI

L
(∅,¬I−) ∪ ¬I− |= body(r). Since T n

fΠI
L
(∅,¬I−) ⊆ I, body(r) is

satisfied by T n
fΠI

L
(∅,¬I−). By the induction hypothesis, body(r) is satisfied

by T n
sΠI

L
(∅,¬I−) and thus head(r) ∈ T n+1

sΠI
L

(∅). Since head(r) = head(r′),

head(r′) ∈ T n+1
sΠI

L
(∅). This shows T n+1

sΠI
L

(∅) ⊇ T n+1
fΠI

L
(∅,¬I−).

Conversely, assume head(r) ∈ T n+1
sΠI

L
(∅), due to that body(r) is satisfied by

T n
sΠI

L
(∅). By the induction hypothesis, body(r) is satisfied by T n

fΠI
L
(∅,¬I−).

Since body(r) is a conjunction of ground atoms and monotonic dl-atoms and
T n
fΠI

L
(∅,¬I−) ⊆ I, T n

fΠI
L
(∅,¬I−) ∪ ¬I− |= body(r).

Since A is a monotonic dl-atom and I does not satisfy A (I satisfies ¬A),
no J with ∅ ⊆ J ⊆ I satisfies A. This means all J ⊆ I satisfies ¬A. Since
T n
fΠI

L
(∅,¬I−) ⊆ I, T n

fΠI
L
(∅,¬I−) ∪ ¬I− |= ¬A.

Since B is a ground atom and I satisfies ¬B, ¬B ∈ ¬I−. This means
T n
fΠI

L
(∅,¬I−) ∪ ¬I− |= ¬B.

As a result, T n
fΠI

L
(∅,¬I−) ∪ ¬I− |= body(r′), so head(r′) ∈ T n+1

fΠI
L

(∅,¬I−).

Since head(r) = head(r′), head(r) ∈ T n+1
fΠI

L
(∅,¬I−). This shows T n+1

sΠI
L

(∅) ⊆
T n+1
fΠI

L
(∅,¬I−).

Therefore, T n+1
sΠI

L
(∅) = T n+1

fΠI
L

(∅,¬I−) and we conclude the proof. �

Proof of Theorem 10. By Theorem 7 it suffices to show that if I is a
strong answer set then I is a well-justified FLP answer set. Assume that Π
has k+1 strata {Π0, . . . ,Πk} and let I be a strong answer set of Π.

By Theorem 1 and Lemma 1, lfp(TfΠI (∅,¬I−)) is a subset of I.
By Theorem 9, I = Ik, where I0 be the least model of Π0, and for each

1 ≤ i ≤ k, Ii is the least model of Πi(Ii−1) ∪ Ii−1. Let I−1 = ∅. We show
by induction that for −1 ≤ i ≤ k, Ii ⊆ lfp(TfΠI

L
(∅,¬I−)). When i = −1,

I−1 ⊆ lfp(TfΠI
L
(∅,¬I−)). As induction hypothesis, assume that for any i with

0 ≤ i ≤ k, Ii−1 ⊆ lfp(TfΠI
L
(∅,¬I−)). We next prove Ii ⊆ lfp(TfΠI

L
(∅,¬I−)).

58

Note that Ii is the least model of Πi(Ii−1)∪ Ii−1 and by the induction hy-
pothesis, Ii−1 ⊆ lfp(TfΠI

L
(∅,¬I−)). Let Γ = Πi(Ii−1)∪ Ii−1. Since Γ is a pos-

itive dl-program, the least model Ii can be computed from Γ by applying the
van Emden-Kowalski one-step provability operator TΓ(S) via the sequence
〈T jΓ(∅)〉∞j=0, where T 0

Γ(∅) = ∅ and for j ≥ 0 T j+1
Γ (∅) = TΓ(T jΓ(∅)). That is, Ii is

equal to the fixpoint lfp(TΓ(∅)). Therefore, to prove Ii ⊆ lfp(TfΠI
L
(∅,¬I−)),

we prove by induction that for each j ≥ 0, T jΓ(∅) ⊆ lfp(TfΠI
L
(∅,¬I−)). It is

obviously true for j = 0. As induction hypothesis, assume that for 0 ≤ j < s,
T jΓ(∅) ⊆ lfp(TfΠI

L
(∅,¬I−)). We next show T sΓ(∅) ⊆ lfp(TfΠI

L
(∅,¬I−)).

T sΓ(∅) = TΓ(T s−1
Γ (∅)) = {head(r) | r ∈ Γ such that body(r) is satisfied

by T s−1
Γ (∅)}. Note that Γ = Πi(Ii−1) ∪ Ii−1, Ii−1 ⊆ lfp(TfΠI

L
(∅,¬I−)) and

T s−1
Γ (∅) ⊆ lfp(TfΠI

L
(∅,¬I−)). Let r be a rule in Πi(Ii−1) such that body(r)

is satisfied by T s−1
Γ (∅). Πi must have a rule r′, where head(r) = head(r′)

and body(r) is obtained from body(r′) by deleting all negative literals and
all nonmonotonic dl-atoms. For simplicity let body(r′) = body(r) ∧ A ∧ ¬B,
where A is a ground nonmonotonic dl-atom and B is either a ground atom
or a ground dl-atom. By the definition of Πi(Ii−1), A is satisfied by Ii−1

and B is not satisfied by Ii−1. Since Π is stratified, the satisfaction of A
and B only depends on the satisfaction of their input atoms in

⋃
0≤j<iHBΠj

,
independently of any atoms in HBΠ \

⋃
0≤j<iHBΠj

. This means that A is

entailed by Ii−1∪¬I−i−1 and B is not entailed by Ii−1∪¬I−i−1; i.e. Ii−1∪¬I−i−1 |=
A and Ii−1 ∪ ¬I−i−1 6|= B. Then, for any interpretation J with Ii−1 ⊆ J and
I−i−1 ⊆ J−, A (resp. B) is satisfied (resp. not satisfied) by J . Since Ii−1 ⊆ I
and I−i−1 ⊆ I−, A (resp. B) is satisfied (resp. not satisfied) by I. Since body(r)
contains no negative literals or nonmonotonic dl-atoms and T s−1

Γ (∅) ⊆ Ii ⊆ I,
that body(r) is satisfied by T s−1

Γ (∅) implies body(r) is satisfied by I. This
shows that body(r′) is satisfied by I. Thus, the rule r′ is in fΠI

L.
For the above rule r′ with body(r′) = body(r) ∧ A ∧ ¬B, we next prove

lfp(TfΠI
L
(∅,¬I−)) ∪ ¬I− |= body(r′). Since body(r) contains no negative lit-

erals or nonmonotonic dl-atoms, that body(r) is satisfied by T s−1
Γ (∅) im-

plies body(r) is satisfied by all interpretations J with T s−1
Γ (∅) ⊆ J . Since

T s−1
Γ (∅) ⊆ lfp(TfΠI (∅,¬I−)) ⊆ I, body(r) is satisfied by all interpretations

that satisfy lfp(TfΠI
L
(∅,¬I−))∪¬I−. This means lfp(TfΠI

L
(∅,¬I−))∪¬I− |=

body(r). Moreover, as shown above, for any interpretation J with Ii−1 ⊆ J
and I−i−1 ⊆ J−, A (resp. B) is satisfied (resp. not satisfied) by J . Since
Ii−1 ⊆ lfp(TfΠI

L
(∅,¬I−)) and I−i−1 ⊆ I−, for any interpretation J that satis-

59

fies lfp(TfΠI
L
(∅,¬I−)) ∪ ¬I−, A (resp. B) is satisfied (resp. not satisfied) by

J . This means lfp(TfΠI
L
(∅,¬I−)) ∪ ¬I− |= A and lfp(TfΠI

L
(∅,¬I−)) ∪ ¬I− |=

¬B. As a result, lfp(TfΠI
L
(∅,¬I−)) ∪ ¬I− |= body(r′). By the definition

of the fixpoint lfp(TfΠI
L
(∅,¬I−)), head(r′) ∈ lfp(TfΠI

L
(∅,¬I−)) and thus

head(r) ∈ lfp(TfΠI
L
(∅,¬I−)). This shows T sΓ(∅) ⊆ lfp(TfΠI

L
(∅,¬I−)). There-

fore, lfp(TΓ(∅)) ⊆ lfp(TfΠI
L
(∅,¬I−)) and thus Ii ⊆ lfp(TfΠI

L
(∅,¬I−)).

To conclude, I = Ik ⊆ lfp(TfΠI
L
(∅,¬I−)) ⊆ I; i.e. lfp(TfΠI

L
(∅,¬I−)) = I.

Hence, I is a well-justified FLP answer set. �

Proof of Theorem 11.
1. Membership

We first prove the Σp
2-membership of deciding the existence of FLP answer

sets. Given a propositional logic program Π, we guess an interpretation I
and first verify that I is a model of Π, and then compute the FLP-reduct
fΠI . These two steps can be done in polynomial time. The main part
of determining if I is an FLP answer set of Π is to determine if I is a
minimal model of fΠI . Note that I is a minimal model of fΠI if and only if
fΠI ∪ ¬I− ∪ ¬

∧
A∈I A is unsatisfiable. This is co-NP-complete because it is

NP-complete to determine if a propositional theory is satisfiable. Thus with
a call to an NP oracle, we can verify whether I is an FLP answer set of Π in
polynomial time.

Next we prove the Σp
2-membership of deciding the existence of well-

justified FLP answer sets. Given a propositional logic program Π, we guess
an interpretation I and can verify that I is a model of Π and compute
the FLP-reduct fΠI in polynomial time. It consists of two major parts to
determine if I is a well-justified FLP answer set of Π: (1) compute the fix-
point lfp(TfΠI (∅,¬I−)); and (2) determine whether lfp(TfΠI (∅,¬I−))∪¬I− |=∧
A∈I A. Let Π consist of M rules. To reach the fixpoint lfp(TfΠI (∅,¬I−)),

we have computations of the form T ifΠI (∅,¬I−)∪¬I− |= body(r) for at most

M2 times. Note that it is co-NP-complete to compute T ifΠI (∅,¬I−)∪¬I− |=
body(r). Thus part (1) can be done in polynomial time with the help of an
NP oracle. Part (2) can be computed with one call to an NP oracle. Con-
sequently, we can verify whether I is a well-justified FLP answer set of Π in
polynomial time with the help of an NP oracle.

2. Hardness
Next we prove the Σp

2-hardness of deciding the existence of ordinary FLP
resp. well-justified FLP answer sets. A positive disjunctive logic program P

60

consists of a finite set of rules of the form A1∨· · ·∨Al ← B1∧· · ·∧Bm, where
l > 0, m ≥ 0, and each Ai and Bi is a ground atom. An interpretation I is a
standard answer set of P if and only if I is a minimal model of P (Gelfond
and Lifschitz, 1991). As shown by Eiter and Gottlob (1995), for a given
ground atom A it is Σp

2-hard to decide whether a given P has a standard
answer set (i.e. a minimal model) in which A is true.

Let Π = P ′ ∪ {A ← ¬A} be a propositional logic program, where P ′ is
P with each rule H ← B replaced by a material implication B ⊃ H. Note
that an interpretation I is a minimal model of P if and only if I is a minimal
model of P ′. Since all rule bodies in P ′ are empty, by Theorem 4, I is a
minimal model (standard answer set) of P if and only if I is a well-justified
FLP answer set of P ′ if and only if I is an FLP answer set of P ′.

Assume that I is a minimal model (standard answer set) of P in which
A is true. Then, the FLP-reduct fΠI of Π w.r.t. I is the same as P ′. By
Theorem 4, I is a well-justified FLP answer set of fΠI , i.e., for each E ∈ I,
lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= E. This means I is also a well-justified FLP
answer set of Π, and by Corollary 2 also an FLP answer set of Π.

Conversely, assume that I is an FLP or a well-justified FLP answer set
of Π. Due to the rule A ← ¬A in Π, A must be in I and thus fΠI = P ′.
By Theorem 3, I is a minimal model of fΠI . Thus I is a minimal model
(standard answer set) of P in which A is true.

The above proof shows that deciding whether a positive disjunctive logic
program P has a standard answer set in which a given ground atom A is
true can be reduced to deciding the existence of ordinary FLP resp. well-
justified FLP answer sets of a propositional logic program Π. Since Π can
be constructed from P in polynomial time, the Σp

2-hardness of deciding the
existence of ordinary FLP resp. well-justified FLP answer sets of a propo-
sitional logic program immediately follows. We thus conclude the proof of
Theorem 11. �

To prove Theorem 12, we introduce the following two lemmas, which
show that cautious (resp. brave) reasoning for propositional logic programs
under the FLP or the well-justified FLP answer set semantics can be reduced
to deciding the non-existence (resp. existence) of FLP or well-justified FLP
answer sets, and vice versa.

Lemma 4. Let Π be a propositional logic program and l an atom in HBΠ.
Let Π1 = Π ∪ {p ← l ∧ ¬p} (resp. Π1 = Π ∪ {p ← ¬l ∧ ¬p}), where p

61

is a ground atom of a 0-ary predicate not occurring in Π (i.e., HBΠ1 =
HBΠ ∪ {p} 6= HBΠ. Then, l belongs to every (resp. some) FLP or well-
justified FLP answer set of Π if and only if Π1 has no (resp. an) FLP or
well-justified FLP answer set.

Proof. We first prove that cautious reasoning can be reduced to deciding
the non-existence of FLP or well-justified FLP answer sets.

(=⇒) Assume that l belongs to every FLP or well-justified FLP answer
set of Π, and towards a contradiction that Π1 has an FLP or a well-justified
FLP answer set I. Observe that fΠI = fΠI

1: otherwise the rule p ← l ∧ ¬p
would be in fΠI

1 which implies p 6∈ I and l ∈ I; however then I would not be a
model of this rule and thus also not of fΠI

1, contradicting our assumption that
I is an FLP or a well-justified FLP answer set of Π1. Given that fΠI = fΠI

1

however, we conclude that l 6∈ I (either p ∈ I or l 6∈ I has to hold, but p ∈ I
is not founded since there is no rule with head p in fΠI = fΠI

1), and that I
is also an FLP or well-justified FLP answer set of Π. Since l 6∈ I, we reach
a contradiction that l belongs to every FLP or well-justified FLP answer set
of Π.

(⇐=) Assume that Π1 has no FLP or well-justified FLP answer set, and
towards a contradiction that Π has an FLP or well-justified FLP answer set
I with l 6∈ I. Then I is a model of Π1 and fΠI = fΠI

1. So I is also an FLP
or well-justified FLP answer set of Π1, which contradicts that Π1 has no FLP
or well-justified FLP answer set.

We next prove that brave reasoning can be reduced to deciding the exis-
tence of FLP or well-justified FLP answer sets.

(=⇒) Let I be an FLP or well-justified FLP answer set of Π with l ∈ I.
Then I is a model of Π1 and fΠI = fΠI

1. So I is also an FLP or well-justified
FLP answer set of Π1.

(⇐=) Let Π1 have an FLP or well-justified FLP answer set I. Then p 6∈ I
and l ∈ I (by the rule p← ¬l ∧ ¬p). Since fΠI = fΠI

1, I is also an FLP or
well-justified FLP answer set of Π with l ∈ I. �

Lemma 5. Let Π be a propositional logic program, Π1 = Π ∪ {p ← p} and
Π2 = Π ∪ {p}, where p is a ground atom of a 0-ary predicate not occurring
in Π (i.e., HBΠ1 = HBΠ2 = HBΠ ∪ {p} 6= HBΠ. Then, Π has no (resp. an)
FLP or well-justified FLP answer set if and only if p belongs to every (resp.
some) FLP or well-justified FLP answer set of Π1 (resp. Π2).

62

Proof. First note that if a logic program Π has no answer set, which means
Π is inconsistent, then everything is cautiously true in Π under the answer
set semantics, i.e., any l ∈ HBΠ trivially belongs to every answer set of Π.

Since p is a fresh atom not occurring in Π, Π and Π1 by construction have
the same FLP and well-justified FLP answer sets, none of which contains p
(which would not be founded). Therefore, if Π has no FLP or well-justified
FLP answer set, then Π1 has no FLP or well-justified FLP answer set. Thus,
p trivially belongs to every FLP or well-justified FLP answer set of Π1. Con-
versely, if p belongs to every FLP or well-justified FLP answer set of Π1,
then Π1 must be inconsistent without FLP or well-justified FLP answer sets.
Hence, Π must have no FLP or well-justified FLP answer set.

Since p is a fresh atom not occurring in Π, by construction Π has an FLP
or well-justified FLP answer set I if and only if Π2 has an FLP or well-justified
FLP answer set I ∪ {p}. If Π has an FLP or well-justified FLP answer set
I, then p belongs to the FLP or well-justified FLP answer set I ∪ {p} of Π2.
Conversely, if p belongs to an FLP or well-justified FLP answer set I of Π2,
then Π has an FLP or well-justified FLP answer set I \ {p}. �

Proof of Theorem 12. Lemma 4 says that for propositional logic pro-
grams, the problem of deciding whether a ground atom belongs to every
(resp. some) FLP or well-justified FLP answer set can be reduced to decid-
ing whether there exists no (resp. an) FLP or well-justified FLP answer set,
while Lemma 5 states the converse reduction. This shows that cautious (resp.
brave) reasoning for propositional logic programs falls in the same complex-
ity class as the non-existence (resp. existence) of FLP or well-justified FLP
answer sets. Since it is Σp

2-complete to determine if a propositional logic
program has an FLP answer set or a well-justified FLP answer set (Theo-
rem 11), deciding whether a ground atom is in every (resp. some) FLP or
well-justified FLP answer set is complete for co-Σp

2 (resp. Σp
2). �

Proof of Theorem 13. The proof is similar to the proof of Theorems 11
and 12, so we only give a sketch for the Σp

2-completeness of answer set ex-
istence. For the membership proof, since deciding whether a propositional
formula is satisfiable is in NP, deciding whether a propositional formula with
polynomially computable aggregates is satisfiable is also in NP. Then, by
the same argument as the proof of Theorem 11, we can conclude that de-
ciding whether a propositional logic program with polynomially computable
aggregates has an FLP answer set or a well-justified FLP answer set is in

63

Σp
2. For the hardness proof, since propositional logic programs without ag-

gregates are a special case of propositional logic programs with aggregates,
by Theorem 11 it is Σp

2-hard to decide whether a propositional logic program
with aggregates has an FLP answer set or a well-justified FLP answer set. �

Proof of Theorem 14. For the membership proof, since ground normal
logic programs with aggregates are special propositional logic programs with
aggregates, by Theorem 13 deciding whether a ground normal program with
polynomially computable aggregates has a well-justified FLP answer set is
in Σp

2.
Since a ground Horn logic program is a special ground normal logic pro-

gram, to establish the theorem it remains to prove the Σp
2-hardness of deciding

the existence of some well-justified FLP answer set for a given ground Horn
logic program with polynomially computable aggregates. We achieve this by
a reduction of deciding the validity of a quantified Boolean formula

Φ = ∃x1 · · · ∃xn∀y1 · · · ∀ymE n,m ≥ 1

where E is a propositional formula made of ground atoms x1, . . . , xn, y1, . . . , ym.
For each truth assignment υ to x1, . . . , xn, Φ is true if (

∧
υ(xi)=true

xi) ∧
(
∧
υ(xi)=false

¬xi) |= E. Also, Φ is valid if there is an assignment υ such
that Φ is true. It has been shown that deciding the validity of a quantified
Boolean formula of the above type is Σp

2-hard (Stockmeyer and Meyer, 1973).
Note that for any ground formula F , we can construct an aggregate atom

SUM〈({1}, X) : F 〉 = 1 which is logically equivalent to F ; i.e., since the
aggregate variable X does not appear in F , any interpretation I satisfies
SUM〈({1}, X) : F 〉 = 1 if and only if I satisfies F . Therefore, we can use F
and SUM〈({1}, X) : F 〉 = 1 exchangeably.

Let x′1, . . . , x
′
n, f, f

′ be new ground atoms with a zero-arity predicate. We
define a ground Horn logic program Π with aggregate, which consists of the
following rules:

x′i ← SUM〈({1}, X) : ¬xi〉 = 1 for each 1 ≤ i ≤ n (1)
xi ← SUM〈({1}, X) : ¬x′i〉 = 1 for each 1 ≤ i ≤ n (2)
f ← xi ∧ x′i ∧ SUM〈({1}, X) : ¬f〉 = 1 for each 1 ≤ i ≤ n (3)
f ′ ← SUM〈({1}, X) : ¬yj〉 = 1

∧ SUM〈({1}, X) : ¬f ′〉 = 1 for each 1 ≤ j ≤ m (4)
yj ← SUM〈({1}, X) : E〉 = 1 for each 1 ≤ j ≤ m (5)

64

Intuitively, for each 1 ≤ i ≤ n, x′i corresponds to ¬xi, which is denoted by the
logically equivalent aggregate atom SUM〈({1}, X) : ¬xi〉 = 1. Since all of
the ground atoms xi, x

′
i, yj, f, f

′ are with a zero-arity predicate, the Herbrand
base of Π is HBΠ = {x1, . . . , xn, y1, . . . , ym, x

′
1, . . . , x

′
n, f, f

′}.
Note that all aggregate atoms in Π are computable in polynomial time.
Let I be a well-justified FLP answer set of Π. Observe that neither f nor

f ′, which only occur in rules (3) and (4), can be founded. Therefore, f 6∈ I
and f ′ 6∈ I. Moreover, rules (3) and (4) intuitively act as constraints, whose
body must not be satisfied for I to be well-justified. Therefore, yj is in I (by
rules (4)) for every 1 ≤ j ≤ m, and for every i = 1, . . . , n, atoms xi and x′i
cannot be jointly in I (by rules (3)). Additionally, either xi ∈ I or x′i ∈ I
holds (by rules (1) and (2), because if I ∩ {xi, x′i} = ∅ for some index i, then
the body of the respective rules (1) and (2) is satisfied but not their head).
That is, xi ∈ I (x′i ∈ I) if and only if x′i 6∈ I (resp. xi 6∈ I).

Next we show that Π has a well-justified FLP answer set if and only if
the quantified Boolean formula Φ is valid.

(=⇒) Let I be a well-justified FLP answer set of Π. We define the truth
assignment υ to the atoms x1, . . . , xn as follows:

υ(xi) =

{
true if xi ∈ I
false if x′i ∈ I

By I|υ we denote {xi | xi ∈ I} and by ¬I−|υ we denote {¬xi | xi 6∈ I}. Then
under the assignment υ, Φ is true if I|υ ∪¬I−|υ|= E.

Since {y1, . . . , ym} ⊆ I and rules (5) are the only rules in Π whose heads
contain y1, . . . , ym, by the level mapping of the well-justified FLP answer
set semantics the FLP reduct fΠI must contain rules (5) and the entail-
ment lfp(TfΠI (∅,¬I−)) ∪ ¬I− |= SUM〈({1}, X) : E〉 = 1 must hold; for
otherwise y1, . . . , ym would have no justification. Then lfp(TfΠI (∅,¬I−)) ∪
¬I− |= E. Since every rule head in Π is a ground atom, the least fix-
point itself is an interpretation, in particular lfp(TfΠI (∅,¬I−)) = I and thus
I ∪ ¬I− |= E. Note that y1, . . . , ym can be justified only by the rules (5).
Due to SUM〈({1}, X) : E〉 = 1 in their bodies, this only is the case if
I \{y1, . . . , ym}∪¬I− |= E. Moreover, since the atoms x′1, . . . , x

′
n, f, f

′ do not
occur in E, I \ {y1, . . . , ym, x

′
1, . . . , x

′
n} ∪¬I− \ {¬x′1, . . . ,¬x′n,¬f,¬f ′} |= E.

This means I|υ ∪¬I−|υ|= E and thus Φ is true under the above truth assign-
ment υ. Hence Φ is valid.

(⇐=) Assume that Φ is valid, i.e. there exists a truth assignment υ to the
atoms x1, . . . , xn such that Φ is true. Let I be the following interpretation:

65

I = {xi | υ(xi) = true, 1 ≤ i ≤ n} ∪ {x′i | υ(xi) = false, 1 ≤ i ≤ n}
∪ {y1, . . . , ym}.

Obviously, I is a model of Π. Since all rule heads in Π are ground atoms, to
show that I is a well-justified FLP answer set, it suffices to show lfp(TfΠI (∅,
negI−)) = I.

Clearly, no rules of (3) and (4) are in the FLP reduct fΠI . Since Φ is
true under the assignment υ, I|υ ∪¬I−|υ|= E and thus I satisfies E. Then, I
satisfies SUM〈({1}, X) : E〉 = 1. So all rules of (5) are in fΠI . For 1 ≤ i ≤ n,
xi ∈ I if and only if xi ← SUM〈({1}, X) : ¬x′i〉 = 1 is in fΠI , and x′i ∈ I
if and only if x′i ← SUM〈({1}, X) : ¬xi〉 = 1 is in fΠI . As a result, fΠI

consists of the following rules:

x′i ← SUM〈({1}, X) : ¬xi〉 = 1 if xi ∈ I−, for each 1 ≤ i ≤ n (1′)
xi ← SUM〈({1}, X) : ¬x′i〉 = 1 if x′i ∈ I−, for each 1 ≤ i ≤ n (2′)
yj ← SUM〈({1}, X) : E〉 = 1 for each 1 ≤ j ≤ m (5′)

Note that the heads of all rules of (1′) and (2′) constitute I \ {y1, . . . , ym}.
Next we build the fixpoint lfp(TfΠI (∅,¬I−)). To start, let T 0

fΠI (∅,¬I−) =

∅. Since the bodies of all rules of (1′) and (2′) are true in T 0
fΠI (∅,¬I−)∪¬I−,

T 1
fΠI (∅,¬I−) = I \ {y1, . . . , ym}. Since I|υ ∪¬I−|υ|= E, (I \ {y1, . . . , ym})|υ
∪¬I−|υ|= E and thus T 1

fΠI (∅,¬I−)∪¬I− |= E. Then, T 1
fΠI (∅,¬I−)∪¬I− |=

SUM〈({1}, X) : E〉 = 1. So T 2
fΠI (∅,¬I−) = T 1

fΠI (∅,¬I−) ∪{y1, . . . , ym} = I.

The fixpoint is lfp(TfΠI (∅,¬I−)) = T 2
fΠI (∅,¬I−), so I is a well-justified FLP

answer set of Π.
The above proof shows that deciding the validity of a quantified Boolean

formula Φ can be reduced to deciding the existence of well-justified FLP
answer sets of a ground Horn logic program Π with polynomially computable
aggregates. Since Π can be constructed from Φ in polynomial time, the
Σp

2-hardness of deciding the existence of well-justified FLP answer sets of a
ground Horn logic program with aggregates immediately follows from the
Σp

2-hardness of deciding the validity of a quantified Boolean formula. This
concludes the proof of Theorem 14. �

For the proof of Theorem 15, we first recall the following lemma from
(Eiter et al., 2008, Lemma E.5).

Lemma 6. Let Π be a dl-program relative to a DL knowledge base L. The
number of ground dl-atoms in ground(Π) is polynomial, and every such ground

66

dl-atom A = DL[S1op1p1, . . . , Smopmpm;Q](c) has in general exponentially
many different concrete inputs Ip (that is, interpretations Ip of its input pred-
icate symbols p = p1, . . . , pm), but each of these concrete inputs Ip has a poly-
nomial size. Furthermore, if Π is positive, then during the computation of
the least model of Π by fixpoint iteration, the input of any ground dl-atom A
in ground(Π) can increase only polynomially many times, and it thus needs
to be evaluated polynomially often.

For clarity, we prove Theorem 15 by dividing it into three independent
cases and proving them separately. Case 1: L belongs to SHIF(D); case 2:
L belongs to SHOIN (D); and case 3: L belongs to SROIQ(D). We first
prove two lemmas. In the sequel, we denoteHB∗Π = HBΠ∪{¬A | A ∈ HBΠ}.
A subset ofHB∗Π is said to be consistent if it contains no contradictory literals
A and ¬A.

Lemma 7. Let Π be a dl-program relative to a DL knowledge base L, A =
DL[S1op1p1, . . . , Smopmpm;Q](c) a ground dl-atom in ground(Π), and S a
consistent subset of HB∗Π. Computing S |= A or S |= ¬A is in EXP when L
belongs to SHIF(D).

Proof. By definition, an interpretation I of Π satisfies the dl-atom A if
L ∪

⋃m
i=1Ai(I) |= Q(c), where each Ai(I) is a set of concept membership

axioms, role membership axioms, equality/inequality axioms, or their nega-
tions, which are obtained from the input predicate pi in terms of I. By
Lemma 6, any interpretation of the input predicates of A has a polynomial
size, so

⋃m
i=1 Ai(I) has a polynomial size and the computation of

⋃m
i=1Ai(I)

is feasible in exponential time. The computation of L ∪
⋃m
i=1Ai(I) |= Q(c)

can be reduced to computing the unsatisfiability of the DL knowledge base
L ∪

⋃m
i=1Ai(I) ∪ {¬Q(c)}. Since deciding whether a DL knowledge base in

SHIF(D) is satisfiable is complete for EXP (Tobies, 2001; Horrocks and
Patel-Schneider, 2003), the computation of L ∪

⋃m
i=1Ai(I) |= Q(c) is feasi-

ble in exponential time. As a result, deciding whether an interpretation I
satisfies a dl-atom A (resp. ¬A) is in EXP.

Computing S |= A (resp. S |= ¬A) is to check that every model I of
S satisfies A (resp. ¬A). Checking if an interpretation I is a model of S
is in EXP. By Lemma 6, A has exponentially many different concrete in-
puts/interpretations. So S |= A or S |= ¬A can be computed by calling a

67

SHIF(D) reasoner at most exponential times. In each call one interpreta-
tion is checked to see if it satisfies A (resp. ¬A). Consequently, computing
S |= A or S |= ¬A is in EXP when L belongs to SHIF(D). �

Lemma 8. Let Π be a dl-program relative to a DL knowledge base L, A =
DL[S1op1p1, . . . , Smopmpm;Q](c) a ground dl-atom in ground(Π), and S a
consistent subset of HB∗Π. Computing S |= A (resp. S |= ¬A) is in co-NEXP
(resp. NEXP) when L belongs to SHOIN (D), and in co-N2EXP (resp.
N2EXP) when L belongs to SROIQ(D).

Proof. As shown for Lemma 7, checking whether an interpretation I of Π
satisfies a dl-atom A = DL[S1op1p1, . . . , Smopmpm;Q](c) amounts to check-
ing the unsatisfiability of the DL knowledge base L ∪

⋃m
i=1Ai(I) ∪ {¬Q(c)}.

Recall that deciding whether a DL knowledge base in SHOIN (D) (resp.
SROIQ(D)) is satisfiable is complete for NEXP (resp. N2EXP) (Tobies,
2001; Kazakov, 2008).

To compute S |= A is to check that every model I of S satisfies the dl-
atom A. Its complementary task, i.e., to compute S 6|= A, is to check that
there exists a model I of S that does not satisfy A. The latter can be done
by guessing an interpretation I for Π together with an interpretation J for
the DL knowledge base L∪

⋃m
i=1Ai(I)∪{¬Q(c)} and then verifying that (1)

I is a model of S, and (2) J satisfies L∪
⋃m
i=1Ai(I)∪ {¬Q(c)}.11 The guess

of I and J can be done in exponential (resp. double exponential) time when
L is in SHOIN (D) (resp. SROIQ(D)). Verifying that I is a model of S
can be done in exponential time. Since deciding whether a DL knowledge
base in SHOIN (D) (resp. SROIQ(D)) is satisfiable is complete for NEXP
(resp. N2EXP), verifying that J satisfies L ∪

⋃m
i=1Ai(I) ∪ {¬Q(c)} can be

done in exponential (resp. double exponential) time. This shows that the
computation of S 6|= A can be done in NEXP (resp. N2EXP) for SHOIN (D)
(resp. SROIQ(D)). As a result, computing S |= A is in co-NEXP when L
belongs to SHOIN (D), and in co-N2EXP when L belongs to SROIQ(D).

To compute S |= ¬A is to check that every model I of S does not satisfy
the dl-atom A. That is, for every model I of S, L ∪

⋃m
i=1Ai(I) 6|= Q(c) or

equivalently, L ∪
⋃m
i=1 Ai(I) ∪ {¬Q(c)} is satisfiable. Checking this satis-

fiability is in NEXP (resp. N2EXP) for SHOIN (D) (resp. SROIQ(D)).

11When J satisfies L ∪
⋃m

i=1 Ai(I) ∪ {¬Q(c)}, L ∪
⋃m

i=1 Ai(I) ∪ {¬Q(c)} is satisfiable.
In this case, L ∪

⋃m
i=1 Ai(I) 6|= Q(c) and thus I does not satisfy the dl-atom A.

68

There may be at most exponentially many such models for S (Lemma 6).
Therefore, computing S |= ¬A is in NEXP when L belongs to SHOIN (D),
and in N2EXP when L belongs to SROIQ(D). �

Proof of Theorem 15. Case 1: deciding whether Π has a well-justified
FLP answer set is NEXP-complete when L belongs to SHIF(D).

We first guess an interpretation I and show that we can verify in EXP
that I is a well-justified FLP answer set of Π. By Lemma 7, for each dl-atom
A appearing in a rule body body(r) of ground(Π), computing I ∪ ¬I− |= A
and I ∪ ¬I− |= ¬A is in EXP and thus checking if I satisfies body(r) is in
EXP. ground(Π) may have exponentially many rules, so checking whether I
is a model of Π and computing the FLP reduct fΠI is in EXP.

To verify that I is a well-justified FLP answer set of Π, we (1) build the
fixpoint lfp(TfΠI (∅,¬I−)), and (2) check lfp(TfΠI (∅,¬I−)) ∪ ¬I− |=

∧
A∈I A.

Let ground(Π) consist of M rules. To reach the fixpoint lfp(TfΠI (∅,¬I−)),
we have computations of the form T ifΠI (∅,¬I−)∪¬I− |= body(r) for at most

M2 times. By Lemma 7, it is EXP to compute T ifΠI (∅,¬I−)∪¬I− |= body(r).
Thus part (1) is feasible in exponential time. Part (2) can also be done in
exponential time. Consequently, we can verify whether I is a well-justified
FLP answer set of Π in exponential time. Therefore, deciding whether Π has
a well-justified FLP answer set can be done in NEXP.

Recall that for a normal logic program, the well-justified FLP answer set
semantics coincides with the standard answer set semantics. Since deciding
whether a non-ground normal logic program has an answer set under the
standard answer set semantics is NEXP-complete (Dantsin et al., 2001), it
is NEXP-hard to determine whether Π has a well-justified FLP answer set.

To conclude, deciding whether Π has a well-justified FLP answer set is
NEXP-complete when L belongs to SHIF(D). �

In the above proof of the hardness of answer set existence for a dl-program
relative to a SHIF(D) knowledge base, we used the existing hardness re-
sult for a non-ground normal logic program under the standard answer set
semantics. It seems that there is no such existing hardness result avail-
able for a dl-program relative to a SHOIN (D) or SROIQ(D) knowledge
base. Observe that Lemmas 4 and 5 apply to dl-programs relative to any DL
knowledge bases as well (with the same proof); i.e., cautious (resp. brave)
reasoning for dl-programs under the well-justified FLP answer set semantics
can be reduced to deciding the non-existence (resp. existence) of well-justified

69

FLP answer sets, and vice versa. Thus, cautious (resp. brave) reasoning for
dl-programs falls in the same complexity class as the non-existence (resp.
existence) of well-justified FLP answer sets. Therefore, to prove Theorem 15
for the case of SHOIN (D), we first introduce the following hardness result.

Lemma 9. Let Π be a dl-program relative to a SHOIN (D) knowledge base
L and l a ground atom in HBΠ. Deciding whether l is in some well-justified
FLP answer set of Π is PNEXP-hard.

Proof. Let M be a polynomial-time bounded deterministic Turing machine
with access to a NEXP oracle. The PNEXP-hardness is proved by a reduc-
tion of M to brave reasoning for a stratified dl-program P relative to a
SHOIN (D) knowledge base, where dl-atoms in P are used to decide NEXP
oracle calls made by M . The reduction is just the same as the one presented
in (Eiter et al., 2008, Theorem 7.2) except that we do not need to introduce
the rule ¬bl2l−2(0) ← to the stratified dl-program P , where ¬bl2l−2(0) is a
“classical negated atom”. For simplicity, we do not reproduce the reduction
here. As a result, M accepts an input ν if and only if a ground atom l belongs
to the unique strong answer set of P . By Theorem 10, M accepts an input
ν if and only if a ground atom l belongs to the unique well-justified FLP
answer set of P . Therefore, deciding whether l is in some well-justified FLP
answer set of Π is PNEXP-hard. �

Proof of Theorem 15. Case 2: deciding whether Π has a well-justified
FLP answer set is PNEXP-complete when L belongs to SHOIN (D).

By Lemma 6, the number of ground dl-atoms in ground(Π) is polynomial.
Let HBDLΠ = {A ∈ HBΠ | A is an input atom of a dl-atom in ground(Π)}.
The size of HBDLΠ is also polynomial. Let Ip ⊆ HBDLΠ be an interpretation of
input atoms of all dl-atoms in ground(Π). We call Ip an input interpretation
of dl-atoms. Let I−p = HBDLΠ \ Ip.

We first guess an input interpretation Ip together with a chain I0
p = ∅ ⊂

I1
p ⊂ · · · ⊂ Ikp = Ip. Since the size of Ip is polynomial, k is a polynomial. For

each dl-atom A = DL[S1op1p1, . . . , Smopmpm;Q](c) in ground(Π) and each
i ∈ {0, . . . , k}, we check I ip∪¬I−p |= A and I ip∪¬I−p |= ¬A by calling a NEXP
oracle (see Lemma 8). Hence the evaluation of all dl-atoms in ground(Π) can
be done in polynomial time with the help of a NEXP oracle.

Given the above guess and the recorded results of the above checks
I ip ∪ ¬I−p |= A and I ip ∪ ¬I−p |= ¬A for all dl-atoms A in ground(Π), we

70

next call a NEXP oracle to check if there is a Herbrand model I of Π that
(1) is an extension of Ip, which (2) is obtained by a fixpoint computation
compliant with the chain and (3) yielding I as a least fixpoint. More specif-
ically, we guess I and check (1) Ip = I ∩HBDLΠ ; (2) whether in the sequence
〈T iΠ(∅,¬I−)〉∞i=0 for the computation of the fixpoint lfp(TfΠI (∅,¬I−)), the in-
put interpretations increase following the chain I0

p = ∅ ⊂ I1
p ⊂ · · · ⊂ Ikp = Ip;

and (3) whether lfp(TfΠI (∅,¬I−)) = I, i.e., whether I is a well-justified FLP
answer set of Π. Since this essentially amounts to evaluating an ordinary
normal logic program it can be done in polynomial time with the help of a
NEXP oracle.

The above proof shows that given a guess of input interpretations for
all ground dl-atoms, deciding whether Π has a well-justified FLP answer
set complying with the guess is in PNEXP when L belongs to SHOIN (D).
Consequently, deciding whether Π has a well-justified FLP answer set is in
NPNEXP when L belongs to SHOIN (D). Recalling that NPNEXP = PNEXP

(Hemachandra, 1989), the result follows.
By Lemma 9, brave reasoning for dl-programs relative to SHOIN (D)

knowledge bases is PNEXP-hard. Since brave reasoning for dl-programs falls
in the same complexity class as existence of well-justified FLP answer sets,
deciding whether a dl-program has a well-justified FLP answer set is also
PNEXP-hard when L belongs to SHOIN (D). As a result, deciding whether
a dl-program relative to a SHOIN (D) knowledge base has a well-justified
FLP answer set is PNEXP-complete. �

To prove Theorem 15 for the case of SROIQ(D), we recall the concept
of a domino system. A domino system is a triple D = (D,H, V), where D =
{1, . . . , p} is a finite set of tiles and H, V ⊆ D×D are horizontal and vertical
matching relations. For a positive integer m and a word w = w1 . . . wn over
D of length n ≤ m, we say D admits the tiling of m×m with initial condition
w iff there exists a mapping τ : {1, . . . ,m} × {1, . . . ,m} → D such that for
1 < i ≤ m and 1 ≤ j ≤ m, 〈τ(i − 1, j), τ(i, j)〉 ∈ H, for 1 ≤ i ≤ m and
1 < j ≤ m, 〈τ(i, j − 1), τ(i, j)〉 ∈ V , and for 1 ≤ i ≤ n, τ(i, 1) = wi.

We also borrow from (Kazakov, 2008, Theorem 5) the following polynomial-
time reduction of the tilability of domino systems to the satisfiability of DL
knowledge bases in SROIQ(D).

Lemma 10. For a domino system D=(D,H,V) with D={1, . . . , p} and ini-
tial condition w = w1 . . . wn, there exist SROIQ(D) knowledge bases Lg, Lc

71

and Lw, where Lg consists of axioms (3)-(33) in (Kazakov, 2008), Lc consists
of the following axioms (1)-(5) and Lw consists of the axioms (6)-(9)

> v D1 t · · · tDp (1)
Di uDj v ⊥ 1 ≤ i < j ≤ p (2)
Di v ∀r.Di 1 ≤ i ≤ p (3)
Di u ∃υ.Dj v ⊥ < i, j > 6∈ V (4)
Di u ∃h.Dj v ⊥ < i, j > 6∈ H (5)
O v I1 (6)
Ik v ∀r.Ik 1 ≤ k ≤ n (7)
Ik v ∀h.Ik+1 1 ≤ k < n (8)
Ik v Dwk

1 ≤ k ≤ n (9)

such that D admits the tiling of 22n × 22n with initial condition w iff the
concept O is satisfiable w.r.t. the DL knowledge base Lg ∪ Lc ∪ Lw.

The next result follows from a reduction from simple Turing machines to
domino systems (Börger et al., 2001, Theorem 6.12).

Lemma 11. Let M be a nondeterministic Turing machine with time-(and
thus space-) bound 22n, deciding an N2EXP-complete language L(M) over
the alphabet Σ = {0, 1,“ ”}. There exists a domino system D = (D,H, V)
and a linear-time reduction trans that takes any input b ∈ Σ∗ to a word
w ∈ D∗ with |b| = n = |w| such that M accepts b if and only if D admits the
tiling of 22n × 22n with initial condition w.

Since brave reasoning for dl-programs falls in the same complexity class
as the existence of well-justified FLP answer sets, to prove Theorem 15 for
the case of SROIQ(D), we first prove the following hardness result.

Lemma 12. Let Π be a dl-program relative to a SROIQ(D) knowledge base
L and l a ground atom in HBΠ. Deciding whether l is in some well-justified
FLP answer set of Π is PN2EXP-hard.

Proof. Recall that a stratified dl-program has a unique strong answer set,
which is also the unique well-justified FLP answer set. The PN2EXP-hardness
is proved by a generic reduction of a Turing machine M with access to an
N2EXP oracle to brave reasoning for a stratified dl-program Π relative to
a SROIQ(D) knowledge base L under the strong answer set semantics,

72

exploiting the N2EXP-hardness proof for SROIQ(D) (Kazakov, 2008). The
key is to use dl-atoms in Π to decide the results of N2EXP oracle calls made
by M . The reduction is a slight modification of the reduction presented in
(Eiter et al., 2008, Theorem 7.2).

More concretely, let M be a polynomial-time bounded deterministic Tur-
ing machine with access to an N2EXP oracle, and let ν be an input for M .
Since every oracle call can simulate the computation of M on ν before that
call, once the results of all previous oracle calls are known, we can assume
that the input of every oracle call is given by ν and the results of all pre-
vious oracle calls. Since the computation of M after all oracle calls can be
simulated within an additional oracle call, we can assume that the result of
the last oracle call is the result of the computation of M on ν. Finally, since
any input to an oracle call can be enlarged by “dummy” bits, we can assume
that the inputs to all oracle calls have the same length n = 2× (t+ l), where
t is the size of ν, and l = f(t) is the number of all oracle calls: We assume
that the input to the m+ 1-th oracle call (m ∈ {0, . . . , l − 1}) has the form

νt1νt−11 · · · ν11c01c11 · · · cm−11cm0 · · · cl−10

where νt, νt−1, . . . , ν1 are the symbols of ν in reverse order, which are all
marked as valid by a subsequent “1”, c0, c1, . . . , cm−1 are the results of the
previous m oracle calls, which are all marked as valid by a subsequent “1”,
and cm, . . . , cl−1 are “dummy” bits, which are all marked as invalid by a
subsequent “0”.

By Lemma 11, for an N2EXP oracle M ′, there exists a domino system
D = (D,H, V) and a linear-time reduction trans that takes any input b ∈ Σ∗

with |b| = n to a word w = w1 · · ·wn ∈ D∗ such that M ′ accepts b if and
only if D admits the tiling of 22n × 22n with initial condition w. By lemma
10, there exist SROIQ(D) knowledge bases Lg, Lc, Lw such that D admits
the tiling of 22n × 22n with initial condition w if and only if the concept O is
satisfiable w.r.t. the knowledge base Lg ∪ Lc ∪ Lw.

Let the stratified dl-program Π relative to a SROIQ(D) knowledge base
L be defined as follows:

L = Lg ∪ Lc ∪ L′w
Π =

⋃l
j=0 Πj

where L′w consists of the following axioms

73

O v I1 (10)
Ik v ∀r.Ik 1 ≤ k ≤ n (11)
Ik v ∀h.Ik+1 1 ≤ k < n (12)
Ik v Dj t ∃s.({ak,j} u ¬A) 1 ≤ k ≤ n, 1 ≤ j ≤ p (13)

p is the number of tiles of the domino system, n is the size of the inputs to all
oracle calls, A, s, ak,j are fresh concept, role, individuals that do not occur
in Lg and Lc. L

′
w consists of (2 × n + p × n) axioms, which is polynomial.

Intuitively, Ik v Dj means that the tile in the k-th position of the initial
condition is j. The concept ∃s.({ak,j} u ¬A) acts as a “switch” because
when A(ak,j) is true, ({ak,j} u ¬A) ≡⊥ and ∃s.({ak,j} u ¬A) ≡⊥ and thus
Ik v Dj. The set {A(ak,wk

) | 1 ≤ k ≤ n} of concept membership axioms
expresses that the initial condition of the domino system is w = w1 · · ·wn.

For every j ∈ {0, . . . , l}, Πj = Πj
ν ∪ Πj

q ∪ Πj
w←b ∪ Πj

s←w. Informally,
every set of dl-rules Πj generates the input of the j + 1-th oracle call, which
includes the results of the first j oracle calls. Here Πl prepares the input of
a “dummy” (non-happening) l+ 1-th oracle call which contains the result of
the l-th (i.e., the last) oracle call. More concretely, the bitstring a−2t · · · a2l−1

is the input of the j+1-th oracle call if and only if bj−2t(a−2t), . . . , b
j
2l−1(a2l−1)

are in the strong answer set of Π. The components Πj
ν , Πj

q, Πj
w←b and Πj

s←w,
with j ∈ {0, . . . , l}, are defined as follows:

(1) Π0
ν writes ν into the input of the first oracle call, and for each j ∈
{1, . . . , l}, Πj

ν copies ν into the input of the j + 1-th oracle call, i.e.

Π0
ν = {b0

−2i(νi) | i ∈ {1, . . . , t}} ∪ {b0
−2i+1(1) | i ∈ {1, . . . , t}}

Πj
ν = {bj−i(x)← bj−1

−i (x) | i ∈ {1, . . . , 2t}}

(2) Π0
q initializes the rest of the input of the first oracle call with “dummy”

bits, and every Πj
q with j ∈ {1, . . . , l} writes the result of the j-th oracle

call into the input of the j + 1-th oracle call and carries over all the
other result and dummy bits from the input of the j-th oracle call, i.e.

Π0
q = {b0

i (0) | i ∈ {0, . . . , 2l − 1}}
Πj
q = {bji (x)← bj−1

i (x) | i ∈ {0, . . . , 2l − 1}, i /∈ {2j − 2, 2j − 1}}∪
{bj2j−2(0)← DL[A] Aj−1;O v ⊥](); bj2j−2(1)← ¬bj2j−2(0); bj2j−1(1)}

Note that for a DL knowledge base S, S |= O v ⊥ if and only if O is
unsatisfiable w.r.t. S.

74

(3) Every Πj
w←b with j ∈ {0, . . . , l} realizes the above-mentioned linear-

time reduction trans, which transforms any input bj of the Turing
machine M into an initial condition wj of the same length of M ′s
domino system D.

(4) Every Πj
s←w with j ∈ {0, . . . , l} transforms the initial condition wj of

D into an input of the j + 1-th dl-atom via the predicate Aj, i.e.

Πj
s←w = {Aj(ai,d)← wji (d) | i ∈ {1, . . . , n}, d ∈ D}

Observe that M accepts ν if and only if the last oracle call returns “yes”.
The latter is equivalent to bl2l−2(1) being derived from Π and thus bl2l−2(0)
being not derived from Π. So M accepts ν if and only if bl2l−2(1) belongs to
the strong answer set of Π if and only if bl2l−2(1) belongs to the well-justified
FLP answer set of Π.

To conclude, it is PN2EXP-hard to decide whether a given ground atom
l ∈ HBΠ is in some well-justified FLP answer set of a dl-program Π relative
to a SROIQ(D) knowledge base L. �

Proof of Theorem 15. Case 3: deciding whether Π has a well-justified
FLP answer set is PN2EXP-complete when L belongs to SROIQ(D).

The proof of membership is analogous to the above proof of membership
for the case of SHOIN (D).

By Lemma 12, brave reasoning for dl-programs relative to SROIQ(D)
knowledge bases is PN2EXP-hard. Since brave reasoning for dl-programs falls
in the same complexity class as the existence of well-justified FLP answer
sets, deciding whether a dl-program has a well-justified FLP answer set is
also PN2EXP-hard when L belongs to SROIQ(D). Consequently, deciding
whether a dl-program relative to a SROIQ(D) knowledge base has a well-
justified FLP answer set is PN2EXP-complete. �

Proof of Theorem 16. Recall that cautious (resp. brave) reasoning for
dl-programs falls in the same complexity class as the non-existence (resp.
existence) of well-justified FLP answer sets. By Theorem 15, it immediately
follows that deciding whether a ground atom is in every (resp. some) well-
justified FLP answer set is co-NEXP-complete (resp. NEXP-complete) when
L belongs to SHIF(D), PNEXP-complete (resp. PNEXP-complete) when L
belongs to SHOIN (D), and PN2EXP-complete (resp. PN2EXP-complete) when
L belongs to SROIQ(D). �

75

To prove Theorem 17, we introduce the following lemma. Given a dl-
program Π relative to a DL knowledge base L, for every subset S of HBΠ,
let S≤2 denote its restriction to unary and binary predicates. Moreover, we
associate with Π its dl-satisfaction table T (Π, L) given by all tuples 〈I, A, v〉
such that I is a subset of HB≤2

Π , A is a ground dl-atom from ground(Π), and
v = 1 if I satisfies A under L, while v = 0 otherwise.

Lemma 13. Given a ground dl-program Π relative to a DL knowledge base
L, its dl-satisfaction table T (Π, L), and a Herbrand interpretation I, deciding
whether I is an FLP answer set of Π relative to L is in EXP.

Proof. We first compute fΠI , which can be done in polynomial time. For
this purpose the projection I≤2 is generated, and then I |= body(r) is checked
by deciding A ∈ I for ordinary body atoms A, respectively by looking up
〈I≤2, A, 1〉 ∈ T (Π, L) for dl-atoms A. The correctness of the latter is an
immediate consequence of the fact the only unary and binary predicates
occur in the input list of any dl-atom.

Clearly, checking head(r) ∈ I for every r ∈ fΠI can also be done in
polynomial time, and it (if it succeeds) additionally verifies that I is a model
of Π relative to L (otherwise I is also not an FLP answer set).

Second, we need to check for minimality, that is we need to verify J 6|= fΠI

for every J ⊂ I. We do so by an exponential number of tests of answer set
existence for ground ordinary Horn programs with constraints. The size of
each of the programs is bounded by the size fΠI plus a single constraint.
Hence, answer set existence can be checked in polynomial time for each of
these programs. Every program P (I, I ′) corresponds to a subset I ′ of I≤2 by
the following construction: P (I, I ′) is obtained from fΠI by

(i) removing all literals ¬A from rule bodies where A is an ordinary atom;

(ii) replacing every unary or binary ordinary atom A with 1 if A ∈ I ′, and
with 0 otherwise;

(iii) replacing every dl-atom A with v, where 〈I ′, A, v〉 ∈ T (Π, L);

(iv) removing then all rules r such that head(r) = 1, or body(r) contains 0
or ¬1, and removing 0 from the heads, respectively ¬0 and 1 from the
bodies of the remaining rules; and

76

(v) if I ′ = I≤2, then adding the constraint ← A1, . . . , Am, where I \ I≤2 =
{A1, . . . , Am}.

The following property establishes that minimality checking can be done by
checking answer set existence for all programs P (I, I ′) such that I ′ ⊆ I≤2:
there exists some J ⊂ I such that J |= fΠI if and only if P (I, I ′), where I ′ =
J≤2, admits an answer set. Observe that the transformations in items (i)-
(iv) are equivalence preserving for J ⊆ I and that the constraint in item (v)
ensures J ⊂ I (unless this already holds due to I ′ = J≤2 ⊂ I≤2). Given these
observations, the proof of the above property is simple and left to the user.

We have thus shown that deciding whether I is an FLP answer set of
Π relative to L is in EXP provided that its dl-satisfaction table T (Π, L) is
given. �

Proof of Theorem 17. In case of SHIF(D) determining the value v for
a tuple 〈I ′, A, v〉 of T (Π, L) is possible in deterministic exponential time.
Therefore, the whole table T (Π, L) can be computed by performing exponen-
tially many exponential time computations; hence, T (Π, L) is computable in
deterministic exponential time. Consequently, guessing an interpretation I
and deciding whether it is an FLP answer set (computing T (Π, L) first and
applying Lemma 13) is feasible in nondeterministic exponential time.

When L belongs to SHOIN (D), computing T (Π, L) is not feasible in
deterministic exponential time. However, given that the number n0 of tuples
where v = 0 is known, one can proceed as before in nondeterministic expo-
nential time. Establishing n0 requires a polynomial number (in the size of
Π) of decision problems to be solved, where each problem is in NEXP (and
depends on the previous result). Thus, PNEXP membership of the problem
can be established as follows.

We first compute n0 in binary search by deciding problems of the form:
given k and Π, are there at least k tuples in T (Π, L) such that v = 0. Since
the number of tuples in T (Π, L) is exponential in the size of Π, the required
size of k in binary representation is polynomial in the size of Π. Moreover,
given a ground dl-atom A, an interpretation I ⊆ HB≤2

Π , and an exponential
size witness candidate w for I 6|= A (recall that I 6|= A is in NEXP and think
of a potential computation path of a corresponding nondeterministic Turing
machine computation), checking that w indeed witnesses I 6|= A is in EXP.
Therefore, the sub-problems used in our binary search, i.e., given k and Π,
deciding whether there are at least k tuples in T (Π, L) such that v = 0, are in

77

NEXP. By polynomially many calls to a NEXP oracle, we thus can establish
the exact number n0 of tuples in T (Π, L) such that v = 0 in PNEXP.

Once n0 is known, we can use one more call to the oracle to decide
FLP answer set existence, by guessing I together with n0 tuples t1, . . . , tn0

of T (Π, L) where v = 0 and corresponding witness candidates w1, . . . , wn0

for I 6|= A. The oracle then first checks in exponential time for each wi,
that it correctly witnesses I 6|= A and then proceeds as in Lemma 13, given
that T (Π, L) can now be constructed in exponential time since all other
entries are known to have v = 1. This proves PNEXP-membership in case of
SHOIN (D).

The membership proof for SROIQ(D) is analogous, using an N2EXP
oracle instead of the NEXP oracle.

Matching lower bounds, i.e, hardness for NEXP, PNEXP, and PN2EXP,
respectively, follows from the corresponding reductions for well-justified FLP
answer set semantics. It is sufficient to observe that the programs constructed
make use of monotonic dl-atoms only; hence, its well-justified FLP answer
sets coincide with its FLP answer sets. �

Proof of Theorem 18. The termination property of Algorithm 1 follows
from the assumption that all complex atoms occurring in a logic program are
decidable.

We note that the projections of all compatible sets of a normal logic
program Π with complex atoms include all FLP answer sets of Π. Then
by Corollary 2 they also include all well-justified FLP answer sets. Indeed,
given an interpretation I of Π, let Î denote its extension to Π̂ in which, for
each complex atom A, (i) EA is true if and only if I satisfies A and (ii) E ′A
is opposite to EA. Then the reduct fΠ̂Î consists of all rules in f̂ΠI plus
for every complex atom A the rule EA ← ¬E ′A if I satisfies A and the rule

E ′A ← ¬EA otherwise. Hence if I ′ ⊆ I is a model of fΠI , then fΠ̂Î has a
model Ĵ which on all EA and E ′A coincides with Î and whose projection J
on Π coincides with I ′; if I is minimal (i.e., an FLP answer set of Π), then
also the corresponding J is minimal, and thus an answer set of Π̂.

This means that for every well-justified FLP answer set I of Π, there
must be a compatible set Î whose projection on Π is I such that I =
lfp(TfΠI (∅,¬I−)). Obviously, this well-justified answer set will be identi-
fied in the checking step of Algorithm 1. This shows the completeness of
Algorithm 1.

78

For each output I of Algorithm 1, I must be the projection of some
compatible set Î such that I = lfp(TfΠI (∅,¬I−)). As shown in Eiter et al.
(2012a), I is an FLP answer set of Π. Since I = lfp(TfΠI (∅,¬I−)), I is also a
well-justified FLP answer set of Π. This shows the soundness of Algorithm 1.
�

References

Baader, F., Brandt, S., Lutz, C., 2005. Pushing the EL envelope. In: Pro-
ceedings of the Nineteenth International Joint Conference on Artificial In-
telligence. Professional Book Center, Edinburgh, Scotland, UK, pp. 364–
369.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. F.
(Eds.), 2010. The Description Logic Handbook: Theory, Implementation
and Applications, 2nd Edition. Cambridge University Press.

Baral, C., 2003. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving with Answer sets. Cambridge University Press.

Bartholomew, M., Lee, J., Meng, Y., 2011. First-order extension of the FLP
stable model semantics via modified circumscription. In: 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). pp. 724–730.

Bench-Capon, T. J. M., Dunne, P. E., 2007. Argumentation in artificial in-
telligence. Artif. Intell. 171 (10-15), 619–641.

Börger, E., Grädel, E., Gurevich, Y., 2001. The Classical Decision Problem.
Springer.

Brewka, G., Eiter, T., 2007. Equilibria in Heterogeneous Nonmonotonic
Multi-Context Systems. In: AAAI. pp. 385–390.

Brewka, G., Eiter, T., Fink, M., 2011a. Nonmonotonic multi-context systems:
A flexible approach for integrating heterogeneous knowledge sources. In:
Balduccini, M., Son, T. C. (Eds.), Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. Vol. 6565 of Lecture Notes in
Computer Science. Springer, pp. 233–258.

Brewka, G., Eiter, T., Truszczyński, M., 2011b. Answer set programming at
a glance. Communications of the ACM 54 (12), 92–103.

79

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., Rosati, R., 2007.
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. Journal of Automated Reasoning 39 (3), 385–429.

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A., 2001. Complexity and
expressive power of logic programming. ACM Computing Surveys 33 (3),
374–425.

Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T., 2009. Modular non-
monotonic logic programming revisited. In: 25th International Conference
on Logic Programming (ICLP). Springer, pp. 145–159.

Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T., May 2010. Distributed
nonmonotonic multi-context systems. In: Lin, F., Sattler, U. (Eds.), 12th
International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2010), Toronto, Ontario, Canada, May 9-13, 2010.
AAAI Press, pp. 60–70.

de Bruijn, J., Eiter, T., Tompits, H., 2008. Embedding approaches to com-
bining rules and ontologies into autoepistemic logic. In: 11th Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning (KR). AAAI Press, pp. 485–495.

de Bruijn, J., Pearce, D., Polleres, A., Valverde, A., 2010. A semantical
framework for hybrid knowledge bases. Knowledge and Information Sys-
tems 25 (1), 81–104.

Denecker, M., Pelov, N., Bruynooghe, M., 2001. Ultimate well-founded and
stable semantics for logic programs with aggregates. In: 17th International
Conference on Logic Programming (ICLP). Springer, pp. 212–226.

Dung, P., Mancarella, P., Toni, F., 2007. Computing ideal sceptical argu-
mentation. Artificial Intelligence 171, 642–674.

Dung, P. M., 1995. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence 77 (2), 321–357.

Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P., May 2011.
Pushing efficient evaluation of HEX programs by modular decomposition.
In: Delgrande, J., Faber, W. (Eds.), 11th International Conference on

80

Logic Programming and Nonmonotonic Reasoning (LPNMR 2011), Van-
couver, British Columbia, Canada, May 16-19, 2011. Vol. 6645 of LNAI.
Springer, pp. 93–106.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., 2012a. Conflict-driven ASP
solving with external sources. Theory and Practice of Logic Programming
12 (4-5), 659–679.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P., 2012b. Ex-
ploiting Unfounded Sets for HEX-Program Evaluation. In: 13th European
Conference on Logics in Artificial Intelligence (JELIA). pp. 160–175.

Eiter, T., Fink, M., Schüller, P., Weinzierl, A., December 2012c. Finding ex-
planations of inconsistency in nonmonotonic multi-context systems. Tech.
Rep. INFSYS RR-1843-12-09, INFSYS RR-1843-03-08, Inst. für Informa-
tionssysteme, TU Wien, preliminary version in Proc. 12th International
Conference on Knowledge Representation and Reasoning (KR 2010), pp.
329–339, AAAI Press, 2010.

Eiter, T., Gottlob, G., 1995. On the computational cost of disjunctive logic
programming: Propositional case. Annals of Mathematics and Artificial
Intelligence 15 (3-4), 289–323.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H., 2008.
Combining answer set programming with description logics for the seman-
tic web. Artificial Intelligence 172 (12-13), 1495–1539.

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., 2005. A uniform inte-
gration of higher-order reasoning and external evaluations in answer-set
programming. In: 19th International Joint Conference on Artificial Intel-
ligence (IJCAI). Professional Book Center, pp. 90–96.

Faber, W., Leone, N., Pfeifer, G., 2004. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In: 9th European Conference
on Logics in Artificial Intelligence (JELIA). Springer, pp. 200–212.

Faber, W., Pfeifer, G., Leone, N., 2011. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence 175 (1), 278–
298.

81

Fages, F., 1994. Consistency of Clark’s completion and existence of stable
models. Journal of Methods of Logic in Computer Science 1, 51–60.

Ferraris, P., 2005. Answer sets for propositional theories. In: 8th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). Springer, pp. 119–131.

Ferraris, P., Lee, J., Lifschitz, V., 2011. Stable models and circumscription.
Artificial Intelligence 175 (1), 236–263.

Ferraris, P., Lifschitz, V., 2005. Mathematical foundations of answer set pro-
gramming. In: We Will Show Them! (1). pp. 615–664.

Fitting, M., 1996. First-Order Logic and Automated Theorem Proving, 2nd
Edition. Springer.

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic
programming. In: 5th International Conference on Logic Programming
(ICLP). MIT Press, pp. 1070–1080.

Gelfond, M., Lifschitz, V., 1991. Classical negation in logic programs and
disjunctive databases. New Generation Computing 9, 365–385.

Ghidini, C., Giunchiglia, F., April 2001. Local models semantics, or con-
textual reasoning=locality+compatibility. Artificial Intelligence 127 (2),
221–259.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., Sat-
tler, U., 2008. OWL 2: The next step for OWL. Journal of Web Semantics
6 (4), 309–322.

Hemachandra, L. A., 1989. The strong exponential hierarchy collapses. Jour-
nal fo Computer and System Science 39 (3), 299–322.

Horrocks, I., Kutz, O., Sattler, U., 2006. The even more irresistible SROIQ.
In: 10th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR). pp. 57–67.

Horrocks, I., Patel-Schneider, P. F., 2003. Reducing OWL entailment to de-
scription logic satisfiability. In: International Semantic Web Conference
(ISWC). pp. 17–29.

82

Horrocks, I., Patel-Schneider, P. F., van Harmelen, F., 2003. From SHIQ
and RDF to OWL: the making of a web ontology language. Journal of
Web Semantics 1 (1), 7–26.

Kazakov, Y., 2008. RIQ and SROIQ are harder than SHOIQ∗. In: 11th
International Conference on Principles of Knowledge Representation and
Reasoning (KR). pp. 274–284.

Lee, J., Palla, R., 2011. Integrating rules and ontologies in the first-order
stable model semantics (preliminary report). In: AAAI Spring Symposium:
Logical Formalizations of Commonsense Reasoning.

Lifschitz, V., 2002. Answer set programming and plan generation. Artificial
Intelligence 138 (1-2), 39–54.

Lifschitz, V., 2010. Thirteen definitions of a stable model. In: Fields of Logic
and Computation. pp. 488–503.

Liu, L., Pontelli, E., Son, T., Truszczyński, M., 2010. Logic programs with
abstract constraint atoms: the role of computations. Artificial Intelligence
174 (3-4), 295–315.

Lukasiewicz, T., 2010. A novel combination of answer set programming with
description logics for the semantic web. IEEE Transactions on Knowledge
and Data Engineering 22 (11), 1577–1592.

Marek, V. W., Truszczyński, M., 1999. Stable models and an alternative logic
programming paradigm. In: The Logic Programming Paradigm: a 25-Year
Perspective. Springer, pp. 375–398.

Marek, V. W., Truszczyński, M., 2004. Logic programs with abstract con-
straint atoms. In: 19th National Conference on Artificial Intelligence
(AAAI). MIT Press, pp. 86–91.

Motik, B., Rosati, R., 2010. Reconciling description logics and rules. Journal
of the ACM 57 (5).

Niemela, I., 1999. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence
25, 241–273.

83

Pearce, D., 1996. A new logical characterisation of stable models and answer
sets. In: Non-Monotonic Extensions of Logic Programming. pp. 57–70.

Pearce, D., 2006. Equilibrium logic. Ann. Math. Artif. Intell. 47 (1-2), 3–41.

Pelov, W., Denecker, M., Bruynooghe, M., 2007. Well-founded and stable
semantics of logic programs with aggregates. Theory and Practice of Logic
Programming 7 (3), 301–353.

Shen, Y. D., 2011. Well-supported semantics for description logic programs.
In: 22nd International Joint Conference on Artificial Intelligence (IJCAI).
pp. 1081–1086.

Shen, Y. D., Wang, K. W., 2011. Extending logic programs with description
logic expressions for the semantic web. In: International Semantic Web
Conference (ISWC). pp. 633–648.

Shen, Y. D., Wang, K. W., 2012. FLP semantics without circular justifica-
tions for general logic programs. In: 26th AAAI Conference on Artificial
Intelligence (AAAI). AAAI Press, pp. 821–827.

Shen, Y. D., You, J. H., 2007. A generalized Gelfond-Lifschitz transformation
for logic programs with abstract constraints. In: 22nd AAAI Conference
on Artificial Intelligence (AAAI). pp. 483–488.

Shen, Y. D., You, J. H., 2009. A default approach to semantics of logic
programs with constraint atoms. In: 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR). Springer,
pp. 277–289.

Son, T. C., Pontelli, E., 2007. A constructive semantic characterization of
aggregates in answer set programming. Theory and Practice of Logic Pro-
gramming 7 (3), 355–375.

Son, T. C., Pontelli, E., Tu, P. H., 2007. Answer sets for logic programs
with arbitrary abstract constraint atoms. Journal of Artificial Intelligence
Research 29, 353–389.

Stockmeyer, L., Meyer, A., 1973. Word problems requiring exponential time.
In: 5th ACM Symposium on the Theory of Computing. pp. 1–9.

84

Tobies, S., 2001. Complexity results and practical algorithm for logics in
knowledge representation. Ph.D. thesis, RWTH Aachen, Germany.

Truszczyński, M., 2010. Reducts of propositional theories, satisfiability rela-
tions, and generalizations of semantics of logic programs. Artificial Intelli-
gence 174 (16-17), 1285–1306.

van Emden, M. H., Kowalski, R. A., 1976. The semantics of predicate logic
as a programming language. Journal of the ACM 23 (4), 733–742.

85

